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Abstract. In this paper we examine the problem of synthesizing virtual
views from scene points within the scene, i.e., from scene points which
are imaged by the real cameras. On one hand this provides a simple way
of de�ning the position of the virtual camera in an uncalibrated setting.
On the other hand, it implies extreme changes in viewpoint between the
virtual and real cameras. Such extreme changes in viewpoint are not
typical of most New-View-Synthesis (NVS) problems.
In our algorithm the virtual view is obtained by aligning and compar-
ing all the projections of each line-of-sight emerging from the \virtual
camera" center in the input views. In contrast to most previous NVS al-
gorithms, our approach does not require prior correspondence estimation
nor any explicit 3D reconstruction. It can handle any number of input
images while simultaneously using the information from all of them. How-
ever, very few images are usually enough to provide reasonable synthesis
quality. We show results on real images as well as synthetic images with
ground-truth.

Keywords: Novel-view synthesis, Synthesis without structure or motion.

1 Introduction

Consider a sporting event with several cameras taking pictures of the game.
What does the scene look like from the point view of one of the players in the
�eld? What does the ball \see"? In this paper we show how from a few images
of the same scene we can synthesize a virtual view from a real physical scene
point which is imaged by all the input cameras.

This problem can be seen as a special case of New View Synthesis (NVS).
However, it is unique in two ways: (i) In the problem de�ned above, the virtual
camera is located within the scene itself, whereas the real cameras view the
scene from \outside". This implies an extreme change in viewpoint between the
virtual camera and each of the real cameras. Such extreme changes in viewpoint



are not typical of most NVS examples. (ii) On the other hand, the speci�cation
of the new view location is simpli�ed here since this location is visible in the
input images. This allows to naturally specify a physically meaningful position

of the \virtual camera" with respect to the scene in an uncalibrated setting (i.e.,
without requiring Euclidean calibration of the scene).

In this paper, we describe an algorithm for synthesizing virtual views from
scene points within the scene. Our algorithm requires no prior correspondence

estimation nor any 3D reconstruction. The \epipole" of the virtual camera (the
virtual epipole) in each of the real views is de�ned by the image of the physical
scene point selected to be the location of the virtual camera. This point is visible
in the input images. The color of each pixel in the virtual camera image is de-
termined by aligning and comparing the projections of each line-of-sight (LOS)
emerging from the virtual camera center in all the real images. This process does
not require knowledge of the 3D structure of the scene and can be done without
Euclidean calibration. This leads to a representation which bears some resem-
blance to the \generalized disparity space" of [16]. Our approach can handle any
number of input images while simultaneously using the information available in
all of those images.

Many algorithms for NVS have been proposed over the years. To better
explain the bene�ts of our approach and to place it in the appropriate context,
we brie
y review existing approaches to NVS. These can broadly be classi�ed
into three classes of techniques:

The �rst class of techniques relies on 3D reconstruction of the scene followed
by the rendering of the new view (e.g.,[9, 18, 14, 7, 12]). However, the 3D recon-
struction process is error-prone. These errors can lead to signi�cant distortions in
the reconstructed image because geometric error criteria often used to optimize
3D reconstruction do not translate gracefully into errors in rendered appear-
ance. Furthermore, the 3D reconstruction is optimized in one coordinate system
whereas the virtual view is rendered in another coordinate system. Distortions
in synthesis due to inaccuracies in 3D reconstruction are ampli�ed in cases of
severe changes in viewing position between the real and virtual cameras. Many
of these methods thus require a large number of input images taken from a wide
range of viewing directions (e.g., Kanade et. al [11, 12] report using 51 cameras
placed on an elaborate rig surrounding the scene being reconstructed).

The second class of approaches avoids explicit 3D reconstruction, and in-
stead utilizes dense correspondence estimation between the input views. These
dense correspondences are then used to perform a \view transfer" from the in-
put views to the virtual views (e.g., [1, 20]). For example, given two images and
their dense correspondence �eld, a third view can be synthesized by using geo-
metric constraints induced by the Trifocal tensor on the location of these points
in the three views. While these methods avoid explicit 3D reconstruction, the
errors in correspondence result in similar distortions in the new view. Moreover,
the synthesis part involves a forward warping step, which leads to \hole-�lling"
problems at surface discontinuities. These e�ects are ampli�ed in cases of severe
changes in viewing position between the real and virtual cameras.



The approach proposed in this paper performs direct synthesis without an
intermediate step of correspondence estimation or explicit 3D reconstruction.
Because the analysis and synthesis are done directly in the coordinate system
of the virtual view, our process involves only backward (\inverse") warping.
Backward-warping does not generate holes in the synthesized view, and handles
more gracefully large changes in viewpoint and in image resolution between the
synthesized and real images. Furthermore, our synthesis method optimizes errors
directly in the coordinate system of the virtual view, thus avoiding many of the
optimization problems associated with the �rst two classes of NVS methods. Our
method can thus synthesize views of the scene from signi�cantly di�erent viewing
positions than those of the real cameras (as required in order to synthesize the
scene from a point within the scene).

A third class of NVS methods exists which, like our method, also avoids
the need for 3D reconstruction and correspondence estimation altogether. This
family of methods is exempli�ed by the \light�eld" [8] and the \lumigraph"
[4]. However, these methods use very dense sampling of the view-space. They
require an extreme number of input camera views to generate 4D representations
of the scene by storing the radiance observed at each point in the 3D world in
each direction. Synthesis then proceeds by extracting 2D slices of this dense
4D data volume, corresponding to the light observed in the requested viewing
direction from the requested viewpoint. Acquiring all the images for generating
this large 4D volume at preprocessing is a practical limitation of these methods.
This problem ampli�es when dealing with large-scale complex scenes or with
dynamic scenes (i.e., scenes which change frequently), as collecting the required
amount of data at reasonable space-time costs becomes practically impossible.

Unlike this family of methods, our approach does not need a large number
of input images. In fact, very few images (in some experiments less than ten)
are enough to provide reasonable synthesis quality by our method, with image
quality degrading gracefully with fewer images.

Our algorithm is embedded in the Plane+Parallax geometric framework [6,
5, 2, 17, 15, 13]. By aligning all the input images with respect to a real planar
surface in the scene (e.g., the ground plane), the camera matrices simplify to the
camera epipoles between the real views. We further show that for some practical
scenarios the explicit estimation of the epipoles (which may be diÆcult between
widely separated views) is not necessary. Thus, in those situations we can also
deal with cases where the real input cameras are situated very far apart from
each other viewing the scene from signi�cantly di�erent viewing directions. This
is on top of the wide base-line between the virtual camera and each of the real
input cameras, which is inherently dictated by our NVS problem.

The rest of the paper is organized as follows: In Section 2 we provide an
overview of our approach for solving this problem. The formulation of the prob-
lem using the Plane+Parallax geometric framework is described in Section 3.
Section 4 summarizes the algorithm. In Section 5 we show how the problem
further simpli�es in several practical scenarios. Results are shown in Section 6.
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Fig. 1. Overview of the approach. (a) n cameras imaging a scene . The position of
the virtual camera V is selected as the tip of the man's head. The line of sight (LOS)
stretching from V to the patch of grass is shown as a thick dotted line. (b) The 3D
LOS is projected via the n camera centers to 2D lines in the n input images. (c) The
n projected lines associated with the 3D LOS are geometrically aligned and stacked.
The leftmost (black) column corresponds to the virtual camera V in each of the images
(i.e., the virtual epipoles). The color-consistent column closest to the projections of V
is selected as the color visible by V when looking in the direction of the LOS (i.e. the
man sees \red" when he looks in that direction).

2 Overview of the Approach

Figure 1 illustrates a scenario where n uncalibrated cameras image a 3D scene.
We wish to synthesize a view of the scene from a scene point V (in this case -
the tip of the man's head). To estimate what \color" (radiance) is visible from V

when looking in any particular direction, one need only analyze the line of sight

(LOS) stretching from V in that direction. Naturally, the �rst physical point
(object) in the scene intersecting this LOS will be the point visible from V . For
example, in our illustration, the LOS (shown as a thick dotted line in Figures 1.a
and 1.b) stretching from V to the patch of grass on the ground, intersects both
the 
ower and the cat's tail. Since the 
ower is the closest physical object to V
on this LOS, its color (red) is the one visible from V in this viewing direction.

The 3D LOS is not available to us. Instead, assuming that the 3D LOS is
not occluded from the real cameras, what we do have is the 2D projections of



the 3D LOS in each of the input images (Figure 1.b). The physical points on the
3D LOS (e.g. head, 
ower, tail, grass) are thus projected onto the corresponding
points on the 2D lines. However, because the 3D LOS is not fully occupied
with physical objects these 2D projected lines also contain projections of points
\behind" the 3D LOS which are visible through the \gaps" (such as the blue
from the water, the green from the �sh, etc.) Given one such 2D projection of
the LOS obtained from one input image we cannot tell which of these colors
originated from points on the LOS and which colors originated from points not
on the LOS. However points on the LOS (i.e., the head, 
ower, tail and grass)
will consistently appear in all projections of the LOS in all input images. This
is not the case for points not on the LOS. Therefore, if we can identify where all
the 2D projections of a single 3D LOS are, geometrically align them and stack
them (see Figure 1.c), then physical points on the LOS will be distinguished from
other points (seen through the \gaps") as they will generate uniformly colored
columns within the stacked lines (e.g. the black, red, ginger and green columns
in Figure 1.c). Other columns (points) will not have consistent colors and can
therefore be ruled out (e.g., the brown, green and blue colors of Figure 1.c).
The leftmost (black) column corresponds to the virtual epipoles of the virtual
camera V on each of the input images. Of all the color-consistent columns the
one closest to the projections of the virtual camera V is selected as the color
visible from V when looking in the direction of the LOS. In our example it is the
red color (the 
ower's leaf). Applying this logic to any viewing direction allows
us to estimate the complete view of the scene from the virtual camera V .

3 Formulating the Problem Using \Plane+Parallax"

We next show how the detection and alignment of the lines shown in Figure 1
becomes simple using the \Plane+Parallax" geometric framework (e.g., [6, 5, 2,
17, 15, 13]). The 2D line projections of the 3D Line-of-Sight (LOS) L in Figure 1.b
are in di�erent coordinate systems of the di�erent camera views. One point
correspondence across these lines is known (the images of the virtual camera V ).
We next show that by aligning any planar surface in the scene across all these
images, these lines transform to a single coordinate system forming a pencil-
of-lines which emerge from a common axis point. In fact, this axis point is the
piercing point of the LOS L with the planar surface. The axis point and the
known virtual epipoles uniquely de�ne these lines for any LOS L.

3.1 Pencil of Lines

Let �0; �1; ::; �n be images of a scene taken using cameras with unknown cali-
bration parameters. Let �0 denote the \reference image". Let � be a plane in
the scene that is visible in all the images (e.g., could be the ground plane). We
can align all the images with respect to the plane � by estimating the homog-
raphy Hi of � between the reference image �0 and each of the other images.
Warping the images by those homographies yields a new set of images fIig

n
i=0,
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Fig. 2. The pencil of lines.

where for any pixel p in image Ii: Ii(p) = �i(Hip). Note that the reference
image I0 = �0 remains unchanged. We will refer to it as IR, to emphasize that
this is the reference image.

We will next show that all the 2D line projections of a 3D line-of-sight (LOS)
form a pencil of lines in the plane-aligned images IR; I1; ::; In. In the generation
of image Ii from �i each pixel in �i was warped by the homography Hi. The
geometric meaning of this operation is displacing each pixel in �i as if its corre-
sponding 3D point was on the plane � , as shown in Figure 2.b. Points that are
truly on � (e.g., the green grass) will thus appear in Ii in their correct image po-
sition (i.e., will be aligned with their corresponding point in IR), whereas points
not on � (e.g., the tail, 
ower, or man's head) will be misaligned with their
corresponding points in IR. (The farther a point is from � , the more misaligned
it will be.)

Let l�i denote the 2D projection of the 3D LOS L on image �i (Figure 2). As
a result of plane alignment, l�i is transformed by the homography Hi to a line li
in image Ii (see Figures 2.b and 2.c). We can see from Figure 2.d that all these
lines flig

n
i=0 (one from each image fIig

n
i=0) form a pencil of lines. The axis point

of this pencil (the green point) corresponds to the image of the \piercing point"
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Fig. 3. The LOS line con�guration.

of the LOS L with � (in this case { the grass). The black points at the other end
of the lines flig

n
i=0 correspond to the \virtual epipoles" of the virtual camera V

in IR; I1; ::; In. These lines (flig
n
i=0) are the lines that need to be \aligned" to

obtain the stacked representation of Figure 1.c.
The virtual epipoles in each image (the black points) are independent of

the lines-of-sight L. Their image coordinates are known, since these points are
de�ned by the user (see Section 4). As to the axis point of the pencil of lines:
Every pixel in image IR corresponds to a piercing point of a di�erent LOS L

with � . Connecting that pixel to the known \virtual epipoles" uniquely de�nes
the pencil of lines corresponding to the LOS L.

3.2 Aligning and Stacking the Lines

We next show how to bring the lines flig
n
i=1 into alignment with lR. This step

is necessary so that they can be stacked and processed to �nd the �rst color-
consistent column (that which is closest to the virtual epipoles), in order to
determine which color is visible from V in the direction of the LOS L (see
Figure 1.c).

We �rst de�ne some notations. Let R;C1; :::Cn denote the camera centers of
the real cameras. V denotes the 3D scene-point from which we wish to synthesize
the virtual view, i.e., the camera center of the \virtual camera" (whose 2D pro-
jection in each of the images is known). Let L be any line-of-sight, and let P be
a physical scene point on L. Every pair of the above-mentioned camera-centers
or scene-points de�nes a 3D line. We denote by upper-case letters the piercing
points of these lines with the plane � (see Figure 3.a), and by corresponding
lower-case letters the projections of these piercing points in the coordinate sys-
tem of the reference camera R. Thus, for example, the piercing-point of the line
passing through Ci and P is denoted by Pi, the piercing-point of the line passing
through R and P is denoted by PR, and the piercing-point of the line passing
through V and P (which is the LOS L) is denoted by PV .



Figure 3.b shows an enlargement of the projections of the piercing points
to the coordinate system of the camera R. Note that feig

n
i=1 are the (real)

epipoles of cameras fCig
n
i=1 in image IR, vR is the (virtual) epipole of the

\virtual camera" V in image IR (e.g., the black point in Figure 2.a), and fvig
n
i=1

are the (virtual) epipoles of the virtual camera V in the (plane-warped) images
fIig

n
i=1 (e.g., the black point in Figure 2.b or Figure 2.c). Further note that pV

is the projection of the piercing point of L with � , which is also the axis point of
the pencil-of-lines de�ned by the LOS L (e.g., the green point in Figure 2). This
point is invariant to the positions of the cameras C1; ::; Cn and is thus common
to all the images IR; I1; ::; In.

We now proceed to show how for any given axis point pV and for any camera
Ci, we can compute the geometric coordinate transformation between the line
lR in image IR (marked in blue) and the line li in image Ii (marked in red),
which will bring the two lines into alignment.

In all the derivations below we assume that points are expressed in homoge-
neous coordinates. The \virtual epipoles" vi and vR are known up to an arbitrary
scale factor (these are speci�ed by the user as the images of the scene point from
which to synthesize the virtual view; see Section 4). The real epipole ei is also
known (e.g., can be estimated from IR and Ii). For any point pR along the blue
(reference) line we can �nd its corresponding point pi along the green line:

pi �= (vi � pV )� (ei � pR) (1)

This equation can be easily veri�ed by noting from Figure 3.b that the point
pi is on the intersection of the red line with the green line. This formulation is
similar to the one derived in [3] for predicting the position of a scene point in a
third image given its location in two other images. Eq. (1) can be rewritten in
the following matrix form:

pi �=Mi pR (2)

where Mi is a 3 � 3 matrix whose elements can be expressed in terms of the
components of the vectors vi, pV and ei.

To summarize, given all the real epipoles feig
n
i=1 (even if only up to arbitrary

individual scale factors), and the virtual epipoles fvig
n
i=1, then for any axis point

pV we can compute the projective transformations fMig
n
i=1 that bring the lines

flig
n
i=1 into alignment with their reference line lR.

A real example of alignment and stacking of such lines is shown in Figure 6.
Several input images are shown with the projections of a LOS L highlighted
in red (Figures 6.(a-f)). These lines were aligned and stacked (Figure 6.g) and
the �rst color-consistent column is marked (which corresponds to the color of
the wooden-gate in front of the can and cubes). The resulting representation in
Figure 6.g bears resemblance to 2D slices of the 4D generalized disparity space
of [16]. However, our representation is obtained by projectively aligning lines
rather than by globally discretizing the disparity space.



Fig. 4. Relating the virtual view to the reference view.

4 Synthesizing the Virtual View

In this section we provide a summary of our algorithm. Let Hsyn be the homog-
raphy relating the synthesized view with the reference view R. Since the position
of the virtual camera is �xed (de�ned by the virtual epipoles), the only remain-
ing degrees of freedom are the internal parameters of the \virtual camera" (e.g.,
its zoom) and its orientation (i.e., to which direction we wish the virtual camera
to look). The user can select these by specifying Hsyn. For example, if Hsyn

is chosen to be the identity matrix, then the synthesized view would be recov-
ered in the coordinate system of the plane-aligned views fIig

n
i=0 (i.e., �-aligned

with the reference view IR), with the same internal calibration parameters as
camera R.

For each pixel p = (x; y; 1)T in the synthesized image Isyn do:

1. Let P denote the 3D scene point visible by the virtual camera center V at
pixel p. Then : pV �= Hsynp (See Figure 4).

2. For each of the plane-aligned images I1; :::; In, li is the line connecting pV
with vi; 1 � i � n (see below). Align all these n lines with lR, the line
connecting pV with pR by using the line-to-line transformation Mi de�ned
in Eq. (2), and stack them vertically as shown in Figure 1.c.

3. Find the �rst color-consistent column, i.e., the column which is closest to the
column of the synthetic epipoles vR; v1; : : : ; vn (see below for more details).
Let \color" denote the color of this column.

4. Assign Isyn(p) := \color".

Specifying the virtual epipoles fvig
n
i=1 can be done by the user in one of the

following ways: (i) The user can \pin-point" the selected scene point in all the
input images, thus determining vi; 1 � i � n explicitly. (ii) The user can \pin-
point" the selected scene point in two images, and geometrically infer its position



in all other images using trifocal constraints (which are also simple epipole-
based constraints after plane alignment [5]). (iii) The user can \pin-point" the
selected scene point in one image and use correlation-based techniques to �nd
its corresponding point in each of the other images. All three options provide a
way for specifying a physically meaningful position of the virtual camera in an
uncalibrated setting.

Color consistency within each column (step 3) is determined using color tech-
niques proposed by [10]: Let A(n+1)�3 be a column of colors represented in YIQ
color space. Denote by cov(A) the covariance matrix of A. We use the maximal
eigenvalue of cov(A) (denoted by �) to indicate the degree of color consistency
within that column. A high value for � indicates large variance of colors in the col-
umn being evaluated, whereas a low value for � indicates high color consistency
(assuming a Lambertian model). A column whose � is below a certain threshold
is considered \color-consistent". Since � (the variance) is almost always nonzero,
the actual color we select as a representative of a \color-consistent" column is
the median color of that column. To robustify the synthesis process we prefer
color consistent columns whose position along the LOS is spatially consistent
with the chosen column of neighboring pixels. This can be thought of as a local
\smoothing" constraint.

Large homogeneous regions in the scene may pose a problem for our al-
gorithm. Projections of di�erent physical points in a uniform region may be
interpreted as projections of the same point because they share the same color.
To reduce the e�ect of uniform regions we use a 
agging scheme similar to that
used in [14] for scene reconstruction. We automatically 
ag pixels in images al-
ready used in the synthesis to prevent them from being used again: If a column
contains pixels 
agged as previously used, it is not selected even if it is color con-
sistent. The pixel scanning order is de�ned in Isyn so that pixels corresponding
to physical points closer to � are evaluated before points farther away.

Since in many natural scenes the reference plane may contain large uniform
regions (e.g. 
oor, grass etc.) we further add a preprocessing step which detects
the ground plane after alignment. Thus, color consistent columns containing
information from the ground plane will only be regarded as projections of a
physical point on the LOS if they appear in the last column (i.e., the piercing
point of LOS L with plane �).

5 A Practical Scenario (Avoiding Epipole Estimation)

So far we assumed the real epipoles of the cameras feig
n
i=1 are known. How-

ever, these may be diÆcult to estimate, especially when the cameras are widely
separated and are looking at the scene from signi�cantly di�erent viewing po-
sitions. We next show how in some practical scenarios the need to estimate
the inter-camera epipoles can be alleviated and replaced by simple image-based
manipulations.

Such is the case when all the cameras are at the same height from the plane� .
In many real-world scenarios this may not be a very restrictive assumption. For



example, consider a sports event. If we choose the ground plane to be the plane
� , then if all cameras are placed at the same height in the stadium (e.g., the same
bench level) this assumption would be satis�ed. Similarly, If a camera is attached
to a mobile rig (e.g., a cart), and is moved around on the 
at ground while taking
pictures of the scene, then all these pictures would be taken from the same height
(even if the camera changes its internal parameters and its orientation as the
rig moves). The same assumption holds if the camera is mounted on an airplane

ying at �xed altitude from the ground or if the camera is attached to a crane
which is parallel to the plane � (� can also be a wall or any other plane in the
scene).

In all these cases the \cameras" are all coplanar. Referring back to Figure 3.b,
we note that the epipole ei lies along the line connecting the two (known) virtual
epipoles vi and vR. Thus, there is only one degree of freedom in the epipole ei
(namely, where it is along that line). When all the real cameras are coplanar,
then all the epipoles feig

n
i=1 lie on a single line in IR. This line is de�ned by

the intersection of two planes: the plane de�ned by the real (coplanar) camera
centers and the image-plane of the reference camera R. If we further rectify the
image IR of R, then this line of real epipoles would go to in�nity, and all the
real epipoles feig

n
i=1 would now be uniquely de�ned by the virtual epipoles. For

example, if ei is known to be in�nite (i.e., its third component wei = 0), then:

ei �= wvRvi � wvivR (3)

where vi = [xviyviwvi ]
T
, vR = [xvRyvRwvR ]

T
, and ei = [xeiyeiwei ]

T
.

Substituting ei in Eq. (1) with the expression of Eq. (3), we get a new matrix
Mi whose 3rd row equals (0; 0; 1). In other wordsMi is now an aÆne transforma-
tion. This implies that the line-to-line transformations fMig

n
i=1 reduce to simple

linear stretching of the lines flig
n
i=1 relative to lR.

The above result was obtained by rectifying the reference image IR. There
are di�erent possible ways of rectifying images. However, since in this particular
case we assumed the cameras were of the same height from the plane � , then the
recti�ed image of IR should be a \nadir view" of the plane � . Such recti�cation
can be achieved based on the visual information in the image IR alone, with-
out referring to any of the other images. The recti�cation can be obtained by
manually imposing linear constraints that force parallel lines on the plane � to
become parallel after recti�cation of IR. This recti�cation step can be thought
of as a type of weak scene-based calibration [19].

6 Results

In our experiments we avoided epipole estimation by maintaining constant cam-
era height above the ground plane (see Section 5). We �rst tested our method
on a synthetic scene with ground truth data. Figure 5.(a{c) shows three of the
ten images rendered from a 3D graphic model (each of size 800 � 600). These
images were used to synthesize a view of the scene from the tip of the green
pencil standing on the 
oor, looking in the direction of the wooden gate. The



synthesized view is shown in Figure 5.d. Note the extreme change in viewpoint
between the positions of the real cameras and the \virtual camera" (the green
pencil). In all input images only the ground is visible through the wooden gate,
while in the reconstructed image (Figure 5.d) parts of the Coke-can and the toy
cube are visible beneath the gate. For comparison Figure 5.e shows the ground
truth image rendered directly from the 3D model from the same viewpoint. This
shows the geometric correctness of our synthesis. The di�erences in image quality
are due to the fact that the image our algorithm synthesized (Figure 5.d) was
generated from low-resolution input images (e.g., Figures 5.(a{c)) whereas the
ground truth image was rendered directly from a perfect 3D model. See �gure 6
for an illustration of our synthesis process.

Three out of 10 input images:

(a) (b) (c)

Synthesized view from the Ground truth:
green pencil:

(d) (e)

Fig. 5. Synthesis results for the Coke-Can sequence (see text).

Figure 7 shows the result of applying our algorithm to images of a real scene
captured by an o� the shelf digital camera. The camera was mounted on a
tripod to guarantee constant height above the ground in all images. Three of
the 14 input images (each of dimension 640 � 480) are shown in Figure 7.(a{
c). The algorithm was used to synthesize virtual views of the scene from two
di�erent scene points: Figure 7.d shows a reconstructed view of the scene from
the tip of the green dinosaur's nose using all 14 input images. Figure 7.e shows
the reconstructed view of the scene from the tip of the purple dinosaur's nose
created using only 11 of the input images. Although both the folder and the
green-and-yellow cube on the 
oor are fully visible in all input images, they
are partially occluded in the synthesized views: The cube appears over the left
shoulder of the triangle in the green dinosaur's view, and over the right shoulder
of the triangle in the purple dinosaur's view as can be expected. Both the triangle



(a) (b) (c)

(d) (e) (f)

(g)

Fig. 6. LOS color analysis (the Coke-Can sequence). (a-f) Show the projection
of a line of sight emerging from the virtual camera (at the tip of the green pencil)
in 6 input images of the Coke-Can experiment (See Figure 5). The projected LOS is
highlighted in red. (g) All ten lines were aligned and stacked. The �rst color-consistent
column is indicated by a red arrow. Its color is that of the wooden gate, which is the
�rst physical object along this LOS from the pencil.

and the cube occlude appropriate parts of the folder located behind them with
respect to the viewpoint of the two dinosaurs.

Figure 8 shows another real example only this time one dinosaur is placed in
front of the other. Eleven images (560�420 pixels each) were used to synthesize
a view from the green dinosaur's nose (Figure 8.d), and only nine were enough to
synthesize a view from the purple dinosaur's nose Figure (8.e). It can be seen that
the purple dinosaur completely occludes both the cube and the puppet from the
viewpoint of the green dinosaur (Figure 8.d). Also, the green and orange columns
on the left almost totally occlude the red-yellow triangle (only the tip of its yellow
side is visible). In contrast the purple dinosaur sees both clearly (Figure 8.e).
The green smear on the 
oor at the bottom left side of the synthesized view in
Figure 8.e is due to the fact that this 
oor-region was never visible in any of the
input images. The puppet (Ernie) appears leaning backwards from the purple
dinosaur's view because it is indeed leaning back as can be seen in Figures 8.(a,c).



Three out of 14 input images:

(a) (b) (c)

Synthesized view from the Synthesized view from the
green dinosaur: purple dinosaur:

(d) (e)

Fig. 7. Synthesis results for the Folder sequence (see text).

References

1. S. Avidan and A. Shashua. Novel view synthesis by cascading trilinear tensors. In
IEEE Transactions on Visualization and Computer Graphics, 1998.

2. A. Criminisi, I. Reid, and A. Zisserman. Duality, rigidity and planar parallax. In
ECCV, Freiburg, 1998.

3. O. Faugeras and L. Robert. What can two images tell us about a third one? In
ECCV, pages 485{492, 1994.

4. S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In SIG-

GRAPH, pages 43{54, 1996.
5. M. Irani, P. Anandan, and D. Weinshall. From reference frames to reference planes:

Multi-view parallax geometry and applications. In ECCV, Freiburg, June 1998.
6. R. Kumar, P. Anandan, and K. Hanna. Direct recovery of shape from multiple

views: a parallax based approach. In Proc 12th ICPR, pages 685{688, 1994.
7. K. N. Kutulakos. Approximate n-view stereo. In ECCV, 2000.
8. M. Levoy and P. Hanrahan. Light �eld rendering. In SIGGRAPH, 1996.
9. P. J. Narayanan, P. W. Rander, and T. Kanade. Constructing virtual worlds using

dense stereo. In ICCV, 1998.
10. M. Orchard and C. Bouman. Color quantization of images. In IEEE Transactions

on Signal Processing, volume 39, 1991.
11. P. Rander, P.J. Narayanan, and T. Kanade. Virtualized reality: constructing

time-varying virtual worlds from real events. In Proc. IEEE Visualization, pages
277{283, October 1997.

12. H. Saito and T. Kanade. Shape reconstruction in projective grid space from a large
number of images. In CVPR, 1999.

13. H. Sawhney. 3D geometry from planar parallax. In CVPR, 1994.
14. S. Seitz and C. Dyer. Photorealistic scene reconstruction by voxel coloring. In

CVPR, 1997.



Three out of 11 input images:

(a) (b) (c)

Synthesized view from the Synthesized view from the
green dinosaur: purple dinosaur:

(d) (e)

Fig. 8. Synthesis results for the Puppet sequence (see text).

15. A. Shashua and N. Navab. Relative aÆne structure: Theory and application to 3D
reconstruction from perspective views. In CVPR, pages 483{489, 1994.

16. R. Szeliski and P. Golland. Stereo matching with transparency and matting. In
ICCV, pages 517{524, January 1998.

17. W. Triggs. Plane + parallax, tensors, and factorization. In ECCV, pages 522{538,
June 2000.

18. S. Vedula, P. Rander, H. Saito, and T. Kanade. Modeling, combining, and ren-
dering dynamic real-world events from image sequences. In Proceedings of the

International Conference on Virtual Systems and Multimedia, 1998.
19. D. Weinshall, P. Anandan, and M. Irani. From ordinal to euclidean reconstruction

with partial scene calibration. In Workshop on 3D Structure from Multiple Images

of Large-Scale Environments, Freiburg, June 1998.
20. T. Werner, R.D. Hersch, and V. Hlav�a�c. Rendering real-world objects using view

interpolation. In ICCV, pages 957{962, June 1995.


