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Abstract

Although surveillance video cameras are now widely
used, their effectiveness is questionable. Here, we focus on
the challenging task of monitoring crowded events for out-
breaks of violence. Such scenes require a human surveyor to
monitor multiple video screens, presenting crowds of people
in a constantly changing sea of activity, and to identify signs
of breaking violence early enough to alert help. With this in
mind, we propose the following contributions: (1) We de-
scribe a novel approach to real-time detection of breaking
violence in crowded scenes. Our method considers statis-
tics of how flow-vector magnitudes change over time. These
statistics, collected for short frame sequences, are repre-
sented using the VIolent Flows (ViF) descriptor. ViF de-
scriptors are then classified as either violent or non-violent
using linear SVM. (2) We present a unique data set of real-
world surveillance videos, along with standard benchmarks
designed to test both violent/non-violent classification, as
well as real-time detection accuracy. Finally, (3) we pro-
vide empirical tests, comparing our method to state-of-the-
art techniques, and demonstrating its effectiveness.

1. Introduction

There is no question that video surveillance equipment
can be easily and cheaply deployed to monitor practically
any environment. The value of doing so, however, is indeed
questioned [2]. Surveillance systems are often ineffective
due to insufficient numbers of trained supervisors watching
the footage and the natural limits of human attention ca-
pabilities [14]. This is understandable, when considering
the huge numbers of cameras that require supervision, the
monotonic nature of the footage, and the alertness required
to pick up on events and provide an immediate response. In
fact, even the seemingly simpler task of searching recorded
videos, off-line, for events that are known to have happened,
requires the aid of Computer Vision systems for video re-
trieval (e.g., [26]) and summarization [27].

Here, we focus on the task of detecting outbreaks of
crowd violence, as it happens, from surveillance video cam-
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Figure 1. Examples of violent (bottom-left) and non-violent (top-
right) crowd behavior in “real-world” videos.

eras. Such videos typically do not have audio tracks, and,
of course, subtitles and other contextual sources of infor-
mation are non-existent. The footage is often far below mo-
tion picture quality, and so color cues are not reliable and
neither are the details required for fine-scale action recog-
nition. Some action recognition techniques are designed to
analyze a single dominant action in the video. Here, how-
ever, videos present crowds, and we do not know a-priori
who will participate in the violence. Finally, crowd scenes
are especially challenging as they present constant, often
monotonous, spatially unconstrained, human motion. This
may not only reduce the effectiveness of a human observing
the videos over long periods of time, but it can also flood a
Computer Vision system with large quantities of motion in-
formation, making methods relying on interest points too
time consuming. Figure 1 illustrates the type of scenar-
ios we consider here by providing some examples from our
database of both violent and non-violent crowd behavior.

In order to design a system capable of operating in
real-time, we forgo high-level shape and motion analysis
(e.g., [1]) and intensive processing [15], instead follow-
ing the example of methods for dynamic texture recogni-
tion, such as [13], in collecting statistics of densely sam-
pled, low-level features. For the purpose of violence de-
tection in crowded scenes we show that accuracy can be
achieved, without compromising processing speed, by con-
sidering how flow-vector magnitudes change through time.
We collect this information, over short frame sequences, in
a representation which we call the VIolent Flows (ViF) de-
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scriptor (Sec. 3.1). ViF descriptors are then efficiently la-
beled as violent or non-violent using a standard linear Sup-
port Vector Machine (SVM).

In order to test the accuracy of our method we require
suitable data and benchmarks. Few video collections are
available for testing violence detection performance, and
none that we are aware of focus on the problem described
here. We have therefore assembled our own collection of
videos, presenting both violent and non-violent crowd be-
haviors. Our videos were all downloaded from the web and
therefore represent unconstrained, “in-the-wild” conditions
and scenes. We tested both our own method, as well as ex-
isting state-of-the-art techniques on violence classification
and violence detection benchmarks designed using this col-
lection. Our tests clearly demonstrate the wide performance
margin, in favor of the method proposed here.

2. Previous work
Action recognition. Violence detection, is a particu-

lar problem within the greater problem of action recogni-
tion. Methods for action recognition can roughly be clas-
sified as either local, interest-point based approaches, or
global, frame-based methods. Interest-point based meth-
ods begin by first detecting space-time key-points [9, 24].
Descriptive information is then extracted at each of these
points using one of several space-time descriptors (see for
example: [11, 17, 19]). A video can then be represented us-
ing, e.g., Bag-of-Feature techniques (as in [19, 23]). These
methods are often very resilient to camera motion and have
been shown to provide excellent performance on a num-
ber of challenging benchmarks [16, 19, 23], however, when
videos contain too few space-time interest points (e.g., little
motion) or too much motion (as in our scenarios), they may
fail to efficiently provide meaningful representations.

The alternative of considering whole frames, or frame
parts, often builds on dense flow estimation between suc-
cessive frames [3, 4] or high-level appearance models [1].
Related to crowd videos are the methods of [12] and more
recently Rodriguez et al. [28]. Both these methods are
data-driven and require matching parts of the query video –
frame segments in [12] and spatiol-temporal cubes in [28]
– to exemplars in a pre-collected database. Searching the
database for matching exemplars would be impractical for
the applications considered here.

Violence detection. Often, “violence detection” refers
to detecting violent scenes in motion pictures and TV
broadcasts. The term “violence” may refer to anything
from explosions to more subtle actions. In such cases,
audio may provide important additional information for
detection [8, 20]. Sometimes a significant change in the
scene (a “surprising event”) may be considered an act
of violence. Boiman and Irani proposed an approach

for detecting unexpected events in videos by using a
data-driven approach [6]. It is not straightforward to apply
their method for real-time processing. Hendel et al. [10],
on the other hand, describe a more efficient, probabilistic
technique. Their method, however, assumes that the scene
can be characterized using multiple space-time tubes, each
containing an object moving in the scene. This requirement
is often impractical in videos of crowds.

Dynamic textures. Videos of crowds may be described as
produced by a stochastic process, stationary in both space
and time. Such videos are often referred to as dynamic
textures [13]. Although the videos we focus on here are
not necessarily stationary – different parts of the frames
may have different motion patterns – it is reasonable to
consider analyzing them using dynamic texture recognition
techniques. Indeed, over the past decade, such methods
have been successfully applied to varying scenes, from
pure textures to facial expression recognition. Recently,
Local Binary Patterns (LBP), originally proposed for face
and texture recognition in 2D images [25] and extended
for 3D videos, have proven both effective and efficient
in recognizing motion patterns [13, 33]. Inspired by
these methods, the Local Trinary Patterns (LTP) of [32]
has demonstrated state-of-the-art performance on action
recognition tasks.

Benchmarks for action recognition. Video benchmarks
have recently shifted focus, presenting more and more
videos obtained “in-the-wild”, typically downloaded from
online repositories such as YouTube. For a recent, com-
prehensive survey of such benchmarks, see [16]. Few data
sets, however, provide surveillance footage and none pro-
vide surveillance footage capturing violent crowd behav-
ior. Although some test sets have been assembled for the
purpose of violence detection, these typically focus on vi-
olence occurring between two (or very few) people [5] or
contain high quality motion picture and TV footage (e.g.,
the “slaps and kisses” data-set [29]). The videos assembled
here, described in Sec. 4, present challenging, real-world,
crowd scenes. We design both a straightforward, five-fold,
cross validation test for violence classification accuracy, as
well as tests for violent action detection.

3. Violence in crowded scenes
We make the following assumptions on the footage and

the problem at hand: (1) Viewpoints are far from the scene,
and therefore capture many people appearing in low resolu-
tion. (2) Processing must be kept at real-time; frame pro-
cessing should require less than 1/25 seconds per frame on
a standard computer and a detection should be made within
a few seconds of the outbreak of violence.

Given a video sequence S of frames {f1, f2, . . .} we



consider two related but different tasks. The first is vio-
lence classification: The video S is assumed to be seg-
mented temporally, containing T frames portraying either
violent or non-violent crowd behavior. The goal is to clas-
sify S accordingly. The second is violence detection: Here,
we assume an input stream of frames and the goal is to de-
tect the change from non-violent to violent behavior, with
the shortest delay from the time (frame) that the change oc-
curred. Moreover, as mentioned above, this goal must be
achieved with processing performed faster than frame-rate.

Existing work [30] has shown that under certain circum-
stances, less than ten video frames are required for reliable
action classification. We consider such sub-second delays
acceptable for a detection system and so reduce the second
problem to the first by processing short frame sequences
separately, classifying each one as either violent or non-
violent; a detection is reported once a violent sub-sequence
of frames is thus encountered. We next describe how each
frame sequence is represented and classified.

3.1. The ViF representation

Given a sequence of frames, S, we produce the VIo-
lence Flows (ViF) descriptor by first estimating the optical
flow between pairs of consecutive frames. This provides
for each pixel px,y,t, where t is the frame index, a flow vec-
tor (ux,y,t, vx,y,t), matching it to a pixel in the next frame
t+ 1. Here, we consider only the magnitudes of these vec-

tors: mx,y,t =
√

(u2x,y,t + v2x,y,t). Doing so is in some
sense a throwback to some early action recognition tech-
niques which also relied on flow-vector magnitudes for pro-
cessing actions [21]. There are some important differences,
however, between those earlier approaches and our own.

Unlike previous methods, we do not consider the mag-
nitudes themselves, but rather how they change over time.
Our rationale is that although flow vectors encode mean-
ingful temporal information, their magnitudes are arbitrary
quantities: they depend on frame resolution, different mo-
tions in different spatio-temporal locations, etc. By com-
paring magnitudes we obtain meaningful measures of the
significance of observed motion magnitudes in each frame
compared to its predecessor. This is somewhat related to
the self-similarity descriptor of [31] and its extension to
action recognition using the LTP descriptors [32]. Unlike
them, however, we consider similarities of flow-magnitudes
in time, rather than local appearances.

Specifically, for each pixel in each frame we obtain a
binary indicator bx,y,t, reflecting the significance of the
change of magnitude between frames:

bx,y,t =

{
1 if |mx,y,t −mx,y,t−1| ≥ θ
0 otherwise (1)

Where θ is a threshold adaptively set in each frame to the
average value of |mx,y,t − mx,y,t−1|. Doing so provides

us with a binary, magnitude-change, significance map bt for
each frame ft. We next compute a mean magnitude-change
map by simply averaging these binary values, for each pixel,
over all the frames ft ∈ S:

b̄x,y =
1

T

∑
t

bx,y,t. (2)

In its simplest form, the ViF descriptor is a vector of
frequencies of quantized values b̄x,y . If the crowd motion
patterns were indeed spatially stationary, this may suffice.
In practice, however, we found that different spatial
regions have different characteristic behaviors. The ViF
descriptor is therefore produced by partitioning b̄ into
M × N non-overlapping cells and collecting magnitude
change frequencies in each cell separately. The distribution
of magnitude changes in each such cell is represented
by a fixed-size histogram. These histograms are then
concatenated into a single descriptor vector.

3.2. Classification with ViF descriptors

We use the ViF descriptors for classification in two
distinct manners: (1) As global descriptors, extracted for a
frame sequence as a whole or (2) as proxies used to produce
a Bag-of-Features representation for each sequence.

Global descriptors. For a given sequence S we produce
its ViF representation. Each such vector is then classified
as representing an either violent or non-violent video.
In practice, we found the ViF representation to capture
meaningful, descriptive information, thus providing high
classification scores even using simple linear support vector
machines (SVM) [7] as the underlying classifier. As a
consequence, real-time violence detection is achieved by
considering short frame sequences, encoding each using its
ViF descriptor and then immediately classifying it.

Bag-of-Features. Although ViF descriptors were designed
with crowd behavior videos in mind, it is natural to consider
how well they perform on “non-textured” actions and gen-
eral action recognition tasks. In Section 5.2 we present such
results using the ASLAN benchmark [16]. On large enough
training sets, we take the frequency vectors produced for
each cell as local video descriptors. These are analogous to
the descriptors produced by using existing STIP techniques.
Here, however, we produce our own descriptors in a uni-
form, M × N grid. These descriptors are then quantized
into a visual vocabulary using k-means. A whole video se-
quence is then represented using the frequencies of the ViF
words it includes. The bags of words are then used accord-
ing to the application at hand (Section 5.2).

4. The violent crowds data-set and benchmarks
Although data-sets which include videos for action

recognition are by no means rare, we know of none suit-



Table 1. Violence/Non Violence Database Statistics
General statistics:
] of videos 246
] unique urls 214
] unique YouTube titles 218

Video statistics:
Shortest video duration 1.04 sec.
Longest video duration 6.52 sec.
Average video duration 3.60 sec.

able for testing violent crowd behavior. We therefore as-
sembled our own database of videos for use in both violence
classification and violence detection tasks. To avoid intro-
ducing biases for particular scenes or behaviors, and at the
same time provide a wide range of challenging real-world
viewing conditions, our data is collected from YouTube.
It therefore includes videos produced under uncontrolled,
in-the-wild conditions, presenting a wide range of scene
types, video qualities and surveillance scenarios. Table 1
provides additional statistical information on our database.
The movies themselves are all de-interlaced and stored as
AVI files. All the videos were compressed using the DivX
codec (mpeg4), with the frames resized to 320×240 pixels.

4.1. Benchmark protocols

We design two separate benchmarks on our video set.
Classification. The first benchmark is a five-fold cross-
validation, classification test. We split the video set into
five sets: half the videos in each set portray violent crowd
behavior and half non-violent behavior. In some cases, dif-
ferent videos originated from the same YouTube clip or the
same scene. In such cases, these videos are all included in
the same set (the sets were mutually scene-exclusive).

The classification tests use a five-fold cross validation
test. Five tests are performed; in each test, four of sets are
used for training (including SVM training and vocabulary
generation, when required). Violence labeling is then
performed on the remaining set. Results are reported as
both mean prediction accuracy (ACC)± standard deviation
(SD) as well as the area under the ROC curve (AUC).

Detection. To evaluate the accuracy and reaction-time of
a violence detection method, we consider videos beginning
with non-violent behavior which turns to violence mid-way
through the video. 21 such videos exist in our collection.
We manually mark the frame in each video where this tran-
sition happens. The goal is to detect the violence as close to
its manually specified outbreak as possible. Methods are
required to process the videos, with frames provided se-
quentially. We require results on this test to present, in a
graph, the percent of violence detections (percent of videos
where violence was correctly detected) for increasing de-
lays in time from violence outbreak. Different methods can
then be compared by their accuracy vs. the time they re-

Table 2. Classification results on our crowd violence database,
mean over 5-folds cross validation. We report mean accuracy (±
Standard Deviation) and AUC.

Method Accuracy (± SD) AUC

LTP [32] 71.53 ± 0.17 % 79.86

HOG [19] 57.43 ± 0.37 % 61.82

HOF [19] 58.53 ± 0.32 % 57.60

HNF [19] 56.52 ± 0.33 % 59.94

ViF 81.30 ± 0.21 % 85.00

quire to detect the violence. Here, all training is performed
on the videos which were not included in the detection set.

5. Experiments
Our method was implemented in MATLAB, the optical-

flow code available from [22], and linear SVM [7]. We
have made few attempts to optimize the few parameters of
our method, and so improved performance may be obtained
by exploring other values. Here, we report the values used
throughout our tests: We use a grid size of M ×N = 4×4.
For the violence/non-violence classification task we con-
sider the whole video at once, i.e. Equation 2 averages
over all the frames in the video to produce a single ViF de-
scriptor. We use 20-bin histograms no matter the number
of frames in the video. For real-time detection, Equation 2
averages frames in five-frame temporal windows, classify-
ing each one separately and appropriately using six-bin his-
tograms. We further found that it is enough to process one
in every three frames for accurate temporal detection.

We compare our method to existing state-of-the-art tech-
niques, representing two different approaches to action
recognition. The first is the interest-point driven method
of [18] as used in [16]. We use the implementation of [19]
and test all three spatio-temporal descriptors it provides:
HOG, HOF, and HNF. We use the videos included in the
training set to produce a vocabulary of 6, 000 visual words
using k-mean. Each video is then represented using a single
frequency vector of size 6, 000 L1 normalized.

The second method we compare with is the LTP descrip-
tor of [32]. LTP, like ViF, is a frame-based descriptor. We
therefore report its performance using the same pipeline
used for our ViF descriptor.

5.1. Crowd violence database tests

We begin by presenting ViF performance on the database
and benchmarks we have assembled for the purpose of
violence classification and detection in crowds. Table 2
presents classification results on our five-fold cross valida-
tion test as described in Section 4.1. The ViF representa-
tion far outperforms the other methods tested. Unsurpris-
ingly, the STIP representations, better suited for “structured
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Figure 2. Left: Violence classification ROC curves for the various
methods, averaged over 5-folds of our benchmark. Right: Real-
Time detection results: ViF detects more violent scenes than [32]
and does so sooner to the violence outbreak

Table 3. Detection results on our benchmark (see text for details).
Method LTP [32] ViF

Success 35.29% 88.23%

Processing time per frame (ms) 10 30

Relative success by time to detection:
1 Frame 23.53% 52.94%

1 Sec 0% 17.65%

10 Sec 5.88% 0%

videos”, rather than the more textural videos in our data set,
performed at almost chance. ROC curves of all tested meth-
ods are provided in Figure 2 (Left).

Our real-time detection tests were performed on a 3Gb
RAM, Intel core i7 computer running Windows Vista.
These results are presented in Figure 2 (Right). We compare
only ViF to LTP; STIP approaches performed too slowly
for real-time processing, requiring, 0.28 seconds per-frame
just for STIP feature extraction. Evidently, ViF detected far
more violent scenes correctly, compared to LTP. It was fur-
thermore far faster to detect the violence, typically in less
than a second from its outbreak. Table 3 summarizes these
scores, providing also run-times for the two methods. Both
operated at faster than frame-rate on our computer, ViF re-
quiring more time to compute optical-flow.

5.2. Non-crowd behavior tests

Although ViF was designed with for crowd violence de-
tection, it is natural to ask: how well ViF performs in action
classification tasks of “non-textured” video scenes? Here
we report the performance of the ViF descriptor on two such
action classification benchmarks.
Hockey violence classification. The Hockey data set [5]
was presented for testing methods designed to classify
videos as violent or non-violent between two (or a few)
participants. The set contains 1, 000 clips divided into five
splits, each containing 100 violent and 100 non-violent
scenes. Methods are required to detect violence in a 5-folds
cross validation test. Existing results on this set were
obtained using STIP descriptors, representing each video

Table 4. Classification results of various methods on the Hockey
set of [5], averaged over five-folds cross validation scheme. All
the STIP results are as reported in [5].

Method Accuracy ± SE

STIP(HOG) Vac50 [5] 87.8%

STIP(HOF) Vac50 [5] 83.5%

moSTIP Vac50 [5] 87.5%

STIP(HOG) Vac1000 [5] 91.7%

LTP [32] 71.90 ± 0.49 %

ViF 82.90 ± 0.14 %

using a Bag-of-Features. Table 4 shows our own result,
the one we obtained with LTP, and the state-of-the-art
performances [5] with STIP [18, 19]. ViF obtains perfor-
mance comparable to using small STIP vocabularies. With
larger vocabularies, STIP outperform ViF. This improved
performance comes at a computational price, making such
methods impractical for real-time processing.

The ASLAN benchmark. To our knowledge, the Action
Similarity Labeling Challenge (ASLAN) data set [16] is the
most recent and comprehensive data set for testing action
recognition methods. It includes thousands of videos por-
traying hundreds of human-performed actions. The goal
of its accompanying benchmark is to decide if two videos
present actors performing the same action, or not (“same”
/ “not-same” classification). Due to the un-textured nature
of all the videos in the ASLAN set, and the high variability
of the actions included in this set, ASLAN is highly un-
suitable for the ViF descriptor. Nevertheless, the results re-
ported in Table 5 demonstrate that ViF performance is com-
parable to other single-descriptor based methods reported
in [16], while being far faster to extract. In these tests,
we used the Bag-of-Words representation with ViF, as de-
scribed in Sec. 3.2.

6. Conclusions

Timely detection of violent outbreaks in crowds may
mean the difference between life and death. Despite the
significance of this task, it has received little attention in
the past. Here, we make several important contributions to-
wards the design of a system for detecting such events: We
describe a novel means for efficient crowd violence detec-
tion. To test our system, as well as existing and future meth-
ods, we assemble a challenging data-set of related videos
along with standard benchmarks. Finally, we demonstrate
performance of both our own technique as well as existing
ones on our own benchmarks and other video benchmarks.

Interestingly, our ViF outperforms existing techniques
by relying on magnitudes of the optical-flow fields alone.
Although action recognition techniques have in the past
been designed based on flow field magnitudes, more elab-



Table 5. Same/not-Same classification results of ViF and STIP
the ASLAN video collection of [16], averaged over 10-folds cross
validation scheme. All the STIP results are as reported in [16].

Method Accuracy ± SE AUC

HOG [16] 59.82 ± 0.82% 63.2%

HOF [16] 56.68 ± 0.56% 58.9%

HNF [16] 59.47 ± 0.66% 63.3%

ViF 56.57 ± 0.25% 58.2%

orate methods have since evolved, utilizing additional
sources of information. Here we show that when consid-
ered within a suitable frame of reference – by comparing
their values from one frame to the next – coupled with spa-
tial pooling, an accurate, computationally efficient repre-
sentation emerges. We show that this representation is par-
ticularly potent when applied to the problem of detecting
abnormal, specifically violent, crowd behavior.
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