
One Shot Similarity Metric Learning
for Action Recognition

Orit Kliper-Gross1, Tal Hassner2, and Lior Wolf3

1 The Department of Mathematic and Computer Science, The Weizmann Institute of
Science, Rehovot, Israel.

orit.kliper@weizmann.ac.il
2 The Department of Mathematics and Computer Science, The Open University,

Raanana, Israel.
hassner@openu.ac.il

3 The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
wolf@cs.tau.ac.il

Abstract. The One-Shot-Similarity (OSS) is a framework for classifier-
based similarity functions. It is based on the use of background samples
and was shown to excel in tasks ranging from face recognition to document
analysis. However, we found that its performance depends on the ability
to effectively learn the underlying classifiers, which in turn depends on
the underlying metric.
In this work we present a metric learning technique that is geared toward
improved OSS performance. We test the proposed technique using the re-
cently presented ASLAN action similarity labeling benchmark. Enhanced,
state of the art performance is obtained, and the method compares favor-
ably to leading similarity learning techniques.

Keywords: Learned metrics; One-Shot-Similarity; Action Similarity

1 Introduction

Analyzing videos of actions performed by humans is a subject of much research
in Computer Vision and Pattern Recognition. The particular problem of action
pair-matching is the task of determining if actors in two videos are performing the
same action or not. This, when the two actors may be different people and when
the viewing conditions may vary. Contrary to related image-similarity tasks such
as pair-matching of face images [1], where class labels are well defined, this task
is often ill-posed; actions are frequently not atomic, and so whether or not two
videos present same or not-same actions is not well defined. In addition, when
the videos are obtained “in the wild”, with no control over viewing conditions
and without the collaboration of the actors appearing in them, the task is even
more challenging.

In this paper we focus on pair-matching (same/not-same classification) of ac-
tion videos obtained in such unconstrained conditions. Performance in this task
ultimately depends on the suitability of the similarity measure used to com-
pare video pairs. Recent results on similar image-based challenges have shown

2 OSSML

that employing background information (sometimes called side information) can
boost performance significantly. In our framework, the background information
consists of a moderately large set of unlabeled examples, that are expected to
be of different classes than the pair of samples we are comparing.

Specifically, the One-Shot-Similarity (OSS) measure [2] utilizes unlabeled
non-class examples to obtain better estimates for the similarity of two face images
[3]. OSS results consequently outperformed other methods on the LFW challenge
[4]. OSS also compares favorably to other metric learning techniques in tasks
related to ancient document analysis [5] and elsewhere [2].

Here, we report attempts to employ OSS on the recently introduced “Action
Similarity Labeling” (ASLAN) data set [6], which includes thousands of videos
from the web, in over 400 complex action classes. The ASLAN set was designed to
capture the variability typical to unconstrained, “in the wild”, action recognition
problems and is currently the most comprehensive benchmark available for action
similarity in videos (some example frames from the ASLAN set are presented in
Figure 1).

Our tests on the ASLAN benchmark demonstrate that the performance gain
obtained using OSS and background information for other tasks does not carry
over to action similarity on the ASLAN set. While background-information might
capture information vital for correctly measuring the similarity of two actions,
benefiting from this information requires that the input space is suitable of this
type of analysis. We therefore propose a novel scheme for supervised metric
learning, the OSS-Metric Learning (OSSML). OSSML learns a projection ma-
trix which improves the OSS relation between the example same and not-same
training pairs in a reduced subspace of the original feature space. Our results
demonstrate that OSSML significantly enhances action similarity performance
on the ASLAN benchmark, compared to existing state-of-the-art techniques.

To summarize, this work makes the following contributions: (a) We have
developed a new metric learning approach and applied it to the problem of
action similarity (pair-matching) in videos. (b) We show how learned projections
using background statistics enhance the performance over unsupervised metric
learning (such as PCA). (c) We further show that applying two complementary
weakly supervised criteria in an interleaving manner provides a substantial boost
in performance, obtaining state-of-the-art results on the ASLAN benchmark.

The rest of this paper is structured as follows. Section 2 presents the OSSML
and derives its formulation. Section 3 applies OSSML to action recognition on
the ASLAN benchmark. Experimental results are presented in section 4. We
conclude in section 5.

1.1 Related work

Metric learning. The choice of a suitable metric is crucial for the design of
a successful pattern recognition system. The literature on the subject is there-
fore substantial. Some existing similarity measures are hand crafted (e.g., [7, 8]).
Alternatively, there is growing interest in methods which apply learning tech-
niques to fit similarity measures and metrics to available training data (see [9]

OSSML 3

Fig. 1. Examples of actions in the ASLAN set

for a comprehensive study). Most common to these techniques is the learning of
a projection matrix from the data so that the Euclidean distance can perform
better in the new subspace. Learning such a matrix is equivalent to learning a
Mahalanobis distance in the original space.

The Relevant Component Analysis (RCA) method of Bar-Hillel et al. [10] is
one such example. They learn a full rank Mahalanobis metric by using equiva-
lence constraints on the training elements. Goldberger et al. [11] described the
Neighborhood Component Analysis (NCA) approach for k-NN classification.
NCA works by learning a Mahalanobis distance minimizing the leave-one-out
cross-validation error of the k-NN classifier on a training set. Another method,
designed for clustering by [12], also learns a Mahalanobis distance metric, here
using semi-definite programming. Their method attempts to minimize the sum
of squared distances between examples of the same label, while preventing the
distances between differently labeled examples from falling below a lower bound.

In [13] a Large Margin Nearest Neighbor (LMNN) method was proposed,
which employed semi-definite learning to obtain a Mahalanobis distance metric
for which any collection of k-nearest neighbors always has the same class label.
Additionally, elements with different labels were separated by large margins.

The Information Theoretic Metric Learning (ITML) approach of Davis et
al. [14] solves a Bregman’s optimization problem [15] to learn a Mahalanobis
distance function. The result is a fast algorithm, capable of regularization by a
known prior matrix, and is applicable under different types of constraints, includ-
ing similarity, dissimilarity and pair-wise constraints. The Online Algorithm for

4 OSSML

Scalable Image Similarity (OASIS) [16] was proposed for online metric learning
for sparse, high-dimensional elements.

Unlike the previously mentioned approaches, the recent method of Nguyen
and Bai [17] attempts to learn a cosine similarity, rather than learning a metric
for the Euclidean distance. This was shown to be particularly effective for pair-
matching of face images on the Labeled Faces in the Wild (LFW) benchmark [1,
18].

Similarities employing background information. The first similarity mea-
sure in a recent line of work, designed to utilize background-information, is the
One-Shot-Similarity (OSS) of [3, 2]. Given two vectors I and J , their OSS score
is computed by considering a training set of background sample vectors N . This
set of vectors contains examples of items different from both I and J , but are
otherwise unlabeled. We review the OSS score in detail in Sec. 2.1. This OSS has
been shown to be key in amplifying performance on the LFW data set. Here, we
extend the OSS approach by deriving a metric learning scheme for emphasizing
the separation between same and not-same vectors when compared using the
OSS.

2 One-Shot-Similarity Metric Learning (OSSML)

Given a set of training examples our goal is to learn a transformation matrix
which improves OSS performance, as measured using cross-validation. We next
derive this transformation for the case where the classifier underlying the OSS
computation is a free-scale Fisher Linear Discriminant.

2.1 The free-scale LDA-based, symmetric OSS score

Given two vectors I and J their One-Shot-Similarity (OSS) score is computed
by considering a training set of background sample vectors N . This set contains
examples of items not belonging to the same class as neither I nor J , but are
otherwise unlabeled. A measure of the similarity of I and J is then obtained
as follows: First, a discriminative model is learned with I as a single positive
example, and N as a set of negative examples. This model is then used to classify
the vector, J , and obtain a confidence score. A second such score is then obtained
by repeating the same process with the roles of I and J switched. The particular
nature of these scores depends on the classifier used. The final symmetric OSS
score is the average of these two scores. Figure 2 summarizes these steps.

The OSS score can be fitted with almost any discriminative learning algo-
rithm. In previous work, Fisher Linear Discriminant (FLD or LDA) [19, 20] was
mostly used as the underlying classifier. Similarities based on LDA can be ef-
ficiently computed by exploiting the fact that the background set N , which is
the source of the negative samples, is used repeatedly, and that the positive
class, which contains just one element, does not contribute to the within class
covariance matrix.

OSSML 5

One-Shot-Similarity(I, J, N) =

Model1 = train(I, N)

Score1 = classify(J, Model1)

Model2 = train(J, N)

Score2 = classify(I, Model2)

return ½(Score1+Score2)

Fig. 2. Computing the symmetric One-Shot-Similarity score for two vectors, I and J,
given a set, N, of background examples.

The free-scale LDA-based One-Shot-Similarity is a simplified version in which
the projection is done along the unnormalized vector. Although in general, the
OSS score is not a positive definite kernel, it was shown in [2] that the free-scale
LDA-based OSS version gives rise to a positive definite kernel and so is suitable
for use in kernel machines, such as Support Vector Machines (SVM) [21]. The
symmetric Free-Scale One-Shot-Similarity (FSOSS) between two vectors I and
J given the negative set N , is expressed as:

FSOSS(I, J,N) = (I−µN)TS+
w (J− I + µN

2
)+(J−µN)TS+

w (I− J + µN
2

) (1)

Where,
µN is the mean of the negative set with X1, ...Xr samples, and S+

w is the pseudo-
inverse of Sw = 1

r

∑r
k=1(Xk − µN)(Xk − µN)T . In practice, to allow for efficient

computation, we apply PCA before the learning, and therefore there are more
examples than dimensions, thus, Sw is invertible and S+

w is simply the inverse
(Sw)−1, which we will denote by, (Sw)−1 = S−1.

2.2 Deriving the OSSML

Let Ii, Ji ∈ Rn be the pairs of input vectors in the training set. Let Li ∈ {0, 1}
be the corresponding binary labels indicating if Ii and Ji belong to the same
class or not. Our goal is to learn a linear transformation A : Rn −→ Rm(m < n)
which will be used to compute OSS in the transformed space. Specifically, we
want to learn the linear transformation that will minimize the cross-validation
error when similarities are computed by the OSSML score below. For each pair
of vectors I, J , the OSS score in the transformed space (i.e. OSSML) is defined
by:

6 OSSML

OSSML(I, J,N,A) =

(AI − µAN)TS+
AN (AJ − AI+µAN

2) + (AJ − µAN)TS+
AN (AI − AJ+µAN

2)
(2)

Here, N is the negative set, with r samples, A is the matrix to learn, AN
is the negative set after applying A to each vector, µAN is the mean vector
of the negative set after applying A, S+

AN is the pseudo-inverse of SAN =
1
r

∑r
k=1(AXk − µAN)(AXk − µAN)T , and SAN = ASwA

T = ASAT is invertible
iff S(= Sw) is invertible.

Replacing, S+
AN by S−1AN = (ASAT)−1 We get,

OSSML(I, J,N,A) =

1
2 (AI −AµN)T (ASAT)−1(2AJ −AI −AµN)+
1
2 (AJ −AµN)T (ASAT)−1(2AI −AJ −AµN) =

1
2 (I − µN)TAT (ASAT)−1A(2J − I − µN)+
1
2 (J − µN)TAT (ASAT)−1A(2I − J − µN).

(3)

Using the following notations:

a = (I − µN)
b = (2J − I − µN)
c = (J − µN)
d = (2I − J − µN)

We have,

OSSML(I, J,N,A) =
1

2
aTAT (ASAT)−1Ab+

1

2
cTAT (ASAT)−1Ad. (4)

2.3 Objective function

The objective function f(A) is defined by:

f(A) =
∑
i∈Pos

OSS(Ii, Ji, N,A)− α
∑
i∈Neg

OSS(Ii, Ji, N,A)− β||A−A0||2 (5)

Where, Pos and Neg are the set of indices of the pairs belong to the same and
not-same sets, respectively. Our goal is to maximize f(A) with respect to A,
given two parameters α and β, both non-negative. In practice we iterate on a
range of β values, using cross-validation on part of the training data, as suggested
by the CSML [17] algorithm. For A0 we followed [17] and tried different m× n
initial projections.

OSSML 7

2.4 Free-scale LDA-based OSS gradient

The objective function f(A) is differentiable with respect to A. The gradient is
given by:

∂(f(A))
∂(A) =∑

i∈Pos

∂(OSS(Ii, Ji, N,A))

∂(A)
− α

∑
i∈Neg

∂(OSS(Ii, Ji, N,A))

∂(A)
− 2β(A−A0).

(6)

Using the notations in Equation 4, the free-scale LDA-based OSS derivative is
given by,

∂(OSS(Ii,Ji,N,A))
∂(A) =

∂(1
2ai

TAT (ASAT)−1Abi)

∂(A) +
∂(1

2 ci
TAT (ASAT)−1Adi)

∂(A) .

(7)

This consists of two identical terms. Each can be written as:

1

2

∂(xTAT (ASAT)−1Ay)

∂(A)

Denote by W the (m×n)-dimensional matrix of the result obtained by deriving
this term. Let D = ASAT , where, A is an (m× n)-dimensional matrix, S is an
(n× n)-dimensional matrix and thus, D is an (m×m)-dimensional matrix.

We want to find the derivative of the function, g(D,A) = xTATD−1Ay, with
respect to the matrix A.

D is a function of A, thus the chain rule can be written as:

[
∂g(D)

∂A
]ij =

∂g(D)

∂Aij
=

K∑
k=1

L∑
l=1

∂g(D)

∂Dkl

∂Dkl

∂Aij
= Tr[(

∂g(D)

∂D
)T

∂D

∂Aij
]

Which is a matrix of the same dimensions as A (i.e. m× n).

The total derivative W is therefore,

Wij = [∂(x
TAT (ASAT)−1Ay)

∂A]ij = Tr[(∂g(D)
∂D)T ∂D

∂Aij
] + [∂g(D,A)

∂A]ij =

Tr[(∂(x
TATD−1Ay)

∂D)T ∂D
∂Aij

] + [∂(x
TATD−1Ay)

∂A]ij

(8)

where, ∂g(D)
∂D and ∂D

∂Aij
are (m×m)-dimensional matrices. The last term, ∂(x

TATD−1Ay)
∂A ,

8 OSSML

gives a matrix the same size as A and we take the ij entry.

1. From the following identity (see, for example, [22] for the various identities
used throughout)

∂(xTX−1y)

∂X
= −X−TxyTX−T ,

we have

∂(xTATD−1Ay)

∂D
= −D−1Ax(Ay)TD−1 = −(ASAT)−1Ax(Ay)T (ASAT)−1

where, X = D = ASAT is an (m ×m)-dimensional symmetric matrix, and we
use Ax and Ay instead of x and y.

2. Using the identity:

∂(XTBX)

∂Xij
= XTBJ ij + JjiBX

we therefore have,

∂D

∂Aij
=
∂ASAT

∂ATji
= ASJji + J ijSAT

Where, X = AT , B = S, and J is a 4-dimensional tensor with J iljk = δjlδki. J
ji

is a matrix of the same dimensions as AT which are, (n ×m), with 1 at the ji
entry, and 0 otherwise. We thus get a (m×m)-dimensional matrix.

3. From the identity:

∂bTXTDXc

∂X
= DTXbcT +DXcbT

we get,

∂xTATD−1Ay

∂A
= D−TAxyT +D−1AyxT = (ASAT)−1AxyT + (ASAT)−1AyxT

where, X = A, D = D−1 = (ASAT)−1, b = x and c = y.

OSSML 9

Finally, the total derivative in Equation 8 becomes:

Wij = [∂(x
TAT (ASAT)−1Ay)

∂A]ij =

Tr[(∂(x
TATD−1Ay)

∂D)T ∂(ASA
T)

∂Aij
] + ∂(xTATD−1Ay)

∂A =

Tr[(−(ASAT)−1Ax(Ay)T (ASAT)−1)T (ASJji + J ijSAT)]+
((ASAT)−1AxyT + (ASAT)−1AyxT)ij

(9)

Which gives a scalar for each entry ij.

The general formula for W is given by,

W (x, y)kl =
Tr[(−(ASAT)−1Ax(Ay)T (ASAT)−1)T (ASJ lk + JklSAT)]+
((ASAT)−1AxyT + (ASAT)−1AyxT)kl

(10)

for k ∈ 1, ..., n, l ∈ 1, ...m.

We have two such (m× n)-dimensional W matrices for each (Ii, Ji) pair.

To summarize, Equation 6 becomes,

∂(f(A))
∂A =

1
2

∑
i∈Pos

(W (ai, bi) +W (ci, di))−

1
2α

∑
i∈Neg

(W (ai, bi) +W (ci, di))−

2β(A−A0)

(11)

With W as above (Equation 10) for,

ai = (Ii − µN)
bi = (2Ji − Ii − µN)
ci = (Ji − µN)
di = (2Ii − Ji − µN)

3 Application to Action Recognition

In this section we apply OSSML to action similarity by measuring its perfor-
mance on the ASLAN dataset.

10 OSSML

3.1 ASLAN data set

The Action Similarity Labeling (ASLAN) collection is a new action recognition
data set. This set includes thousands of videos collected from the web, in over 400
complex action classes. To standardize testing with this data, a “same/not-same”
benchmark is provided, which addresses the action recognition problem as a non
class-specific similarity problem instead of multi-class labeling. Specifically, the
goal is to answer the following binary question – “does a pair of videos present the
same action, or not?”. This problem is sometimes referred to as the “unseen pair
matching problem” (see for example [1]). Each video in the ASLAN collection is
represented using each of the following state-of-the-art video descriptors: HOG,
HOF and HNF [23]. Below, we use these descriptors, as made available by [6]
without modification.

3.2 Same/not-same benchmark

To report performance on the ASLAN database, the experimenter is asked to
report aggregate performance of a classifier on ten separate experiments in a
leave-one-out cross-validation scheme. Each experiment involves predicting the
same/not-same labels for the video pairs in one of the ten “splits”. Each such
split includes 300 pairs of same actions and 300 pairs of not-same actions. In
each experiment, nine of the splits are used for training, with the tenth split used
for testing. The final parameters of the classifier under each experiment should
be set using only the training data for that experiment, resulting in ten separate
classifiers (one for each test set). The ASLAN benchmark has been designed such
that these ten splits are mutually exclusive in the action labels they contain; if
videos of a certain action appear in one split, no videos of that same action will
appear in any other split. These tests therefore measure performance on general
action similarity rather than the recognition of particular action classes.

3.3 Experimental setup

We apply our experiments on each of the three descriptors available with the
ASLAN data set. The dimension of each of the three descriptors is 5000. For
each descriptor, we begin by applying PCA to get the vectors in a reduced n-
dimensional space. We preform extensive tests with different PCA dimensions
to choose a suitable subspace. We further reduce the dimension by applying
OSSML as follows.

For each of the ten separate experiments we divide the nine training subsets
such that one subset was used as a negative set, four subsets as validation samples
and four subsets as training samples. We then use the training samples to find a
matrix A that maximize f(A) for a given α, β and initial matrix A0. Then, we
use the validation samples to choose the next matrix A such that the accuracy
on the validation sets is increased. We proceed iteratively until convergence.

For comparison we have implemented the Cosine Similarity Metric Learning
(CSML) algorithm following the description in [17]. We have further used the
CSML projection as an initial projection for our own OSSML algorithm.

OSSML 11

Finally we have used a combination of similarity scores produced by differ-
ent descriptors in the projected subspace to find optimal classifiers using linear
SVM [21].

Results are reported by constructing an ROC curve and measuring both the
area under curve (AUC) and the averaged accuracy ± standard errors for the
ten splits.

4 Experimental Results

We first apply LDA-based OSS in the original 5000-dimensional descriptor space
and compare it to the Cosine Similarity (CS). Table 1 reports the results of find-
ing an optimal threshold on similarities calculated between vectors in the original
descriptor space, as well as on the square root values of the descriptor entries
(which makes sense for histograms [3]). Original vectors were L2 normalized be-
fore similarities were computed.

Table 1. Original classification performance (no learning): Accuracy±Standard Error
and (AUC), averaged over the 10-folds.

OSS FSOSS CS

HOG original 53.75 ± .0.5(54.6) 51.90 ± 0.4(51.5) 54.27 ± 0.6(55.7)

sqrt 53.20 ± .0.7(53.7) 52.22 ± .0.6(50.6) 53.47 ± .0.6(54.2)

HOF original 53.52 ± .0.5(55.8) 52.63 ± 0.4(53.3) 54.12 ± 0.7(56.5)

sqrt 54.80 ± .0.6(56.0) 52.58 ± 0.6(52.9) 53.83 ± 0.7(56.0)

HNF original 54.57 ± 0.5(55.6) 52.60 ± 0.4(52.4) 54.50 ± 0.6(57.6)

sqrt 54.27 ± .0.6(54.9) 53.17 ± 0.6(51.5) 53.93 ± 0.73(55.8)

To allow for efficient computation, we next use PCA to reduce the dimension
of the original space. PCA was preformed using different training sets for each
experiment. We next choose an n×m initial projection matrix A0 for the learning
algorithm (in our setting n = 100 and m = 50). We tried three different initial
projections as suggested by [17]. We found that in our case best initial results
were obtained by a simple n ×m PCA projection. The initial PCA projection
already improved the results over the original vector space. See the first block
of Table 2.

We next perform three metric learning scenarios: CSML and OSSML with
initial PCA projection, as well as OSSML with the matrix obtained by the
CSML algorithm as the initial projection. We apply the projections obtained by
each of these scenarios and calculated both CS and OSS scores in the projected
subspace.

12 OSSML

In the next three blocks of Table 2 we report the performances achieved by
finding optimal thresholds for each of these scores. In the last column, we show
the performances achieved by concatenating the scores of the three descriptors
and finding an optimal classifier using linear SVM on a three-dimensional input
vector. We further concatenate both scores from all three descriptors to form a
six-dimensional vector given as an input to the linear SVM to get an optimal
classifier. This is reported as CS+OSS on the third line of each algorithm.

Table 2. Classification performance on ASLAN: Accuracy±Standard Error and
(AUC), averaged over the 10-folds. Please see text for more details.

HOG HOF HNF all descriptors

PCA
init.

CS 60.08 ± 0.7(63.9) 57.07 ± 0.7(60.1) 60.43 ± 0.7(64.2) 61.10 ± 0.7(65.2)

OSS 59.83 ± 0.7(63.1) 56.88 ± 0.6(59.4) 59.80 ± 0.7(63.0) 60.98 ± 0.7(64.9)

CS+
61.23 ± 0.6(65.4)

OSS

CSML

CS 60.15 ± 0.7(64.2) 58.62 ± 1.0(61.8) 60.52 ± 0.6(64.3) 62.90 ± 0.8(67.4)

OSS 60.00 ± 0.9(63.8) 58.88 ± 0.7(62.4) 59.98 ± 0.7(63.3) 62.63 ± 0.7(67.6)

CS+
63.12 ± 0.9(68.0)

OSS

OSSML
after
PCA

CS 60.22 ± 0.7(64.1) 57.20 ± 0.8(60.5) 60.10 ± 0.7(64.3) 60.80 ± 0.6(65.7)

OSS 60.05 ± 0.7(63.8) 58.05 ± 0.8(60.7) 60.53 ± 0.8(64.0) 62.32 ± 0.8(66.7)

CS+
62.52 ± 0.8(66.6)

OSS

OSSML
after
CSML

CS 60.63 ± 0.6(65.0) 59.53 ± 0.9(63.6) 60.83 ± 0.8(65.1) 63.17 ± 0.8(68.0)

OSS 60.00 ± 0.8(64.3) 60.05 ± 0.5(63.8) 60.75 ± 0.8(64.1) 63.70 ± 0.8(68.9)

CS+
64.25 ± 0.7(69.1)

OSS

ROC curves of the results for View-2 of the ASLAN data set are presented
in Figure 3. The results were obtained by repeating the classification process 10
times. Each time, we use nine sets for learning as specified in Section 3.3, and
evaluate the results on the tenth set. ROC curve was constructed for all splits
together (the outcome value for each pair is computed when this pair is a testing
pair).

To gain further insight on our results, Figure 4 presents the most confident
predictions made by our best scoring OSSML based method. The figure presents
the most confident correct same and not-same predictions, and the most confi-
dent incorrect same and not-same predictions. Here, confidence was measured

OSSML 13

Fig. 3. ROC for the ASLAN benchmark

as the distance of the vector of similarities from the SVM hyperplane. These re-
sults emphasize the challenges of the ASLAN benchmark: as can be seen, many
of the mistakes result from misleading context. Either “same” was predicted for
two different actions because of similar background or camera motion, or “not-
same” was predicted for the same action, based on very different backgrounds
and motions.

5 Conclusion

In this paper we have extended the usability of the recently proposed One-Shot-
Similarity to cases in which the underlying metric is such that this similarity is
ineffective. To learn a new metric, we construct a cost function that encourages
either high or low similarity to pairs of samples depending on the associated
same/not-same label.

Experiments on a recent and challenging action recognition benchmark reveal
that the proposed metric learning scheme is effective and leads to the best re-
ported results on this benchmark; However, not surprisingly, the degree of success

14 OSSML

Correct Incorrect

S
a
m

e
N

o
t-

S
a
m

e

Fig. 4. Most confident OSSML results. The Same/Not-Same labels are the ground
truth labels, and the Correct/Incorrect labels indicate whether the method predicted
correctly. For example, the top right quadrant displays same-action pairs that were
most confidently labeled as not-same.

depends on the specific initialization used. As an immediate but useful exten-
sion, we would like to apply similar methods to learn effective similarity scores
between sets of vectors based on recent application of the One-Shot-Similarity
to such problems [24].

References

1. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. Technical

OSSML 15

report, University of Massachusetts, Amherst, Technical Report 07-49 (2007)
2. Wolf, L., Hassner, T., Taigman, Y.: The one-shot similarity kernel. In: IEEE 12th

International Conference on Computer Vision (ICCV). (2009) 897–902
3. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In:

Faces in Real-Life Images Workshop in European Conference on Computer Vision
(ECCV). (2008)

4. Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples.
In: Asian Conference on Computer Vision (ACCV). (2009) 88–97

5. Wolf, L., Littman, R., Mayer, N., German, T., Dershowitz, N., Shweka, R.,
Choueka, Y.: Identifying join candidates in the Cairo Genizah. International
Journal of Computer Vision (IJCV) (2011)

6. Kliper-Gross, O., Hassner, T., Wolf, L.: The action similarity labeling challenge.
IEEE Transactions of Pattern Analysis and Machine Intelligence (TPAMI) (2011)
Undergoing minor revisions.

7. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape
matching and object recognition. In: Advances in Neural Information Processing
Systems 13 (NIPS). (2001) 831–837

8. Zhang, H., Berg, A.C., Maire, M., Malik, J.: Svm-knn: Discriminative nearest
neighbor classification for visual category recognition. In: IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR). Volume 2.
(2006) 2126–2136

9. Yang, L., Jin, R.: Distance metric learning: A comprehensive survey. (Michigan
State Universiy) 1–51

10. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions
using equivalence relations. In: International Conference on Machine Learning
(ICML). Volume 20. (2003) 11–18

11. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighborhood compo-
nents analysis. In: Advances in Neural Information Processing Systems 17 (NIPS).
(2005) 513–520

12. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with
application to clustering with side-information. In: Advances in Neural Information
Processing Systems 15 (NIPS). (2002) 505–512

13. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin
nearest neighbor classification. In: Advances in Neural Information Processing
Systems 18 (NIPS). (2006) 1473–1480

14. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: International Conference on Machine Learning (ICML). (2007) 209–
216

15. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Appli-
cations. Oxford University Press (1997)

16. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image
similarity through ranking. The Journal of Machine Learning Research (JMLR)
11 (2010) 1109–1135

17. Nguyen, H.V., Bai, L.: Cosine similarity metric learning for face verification. In:
Asian Conference on Computer Vision (ACCV). (2010) 709–720

18. : (LFW results) vis-www.cs.umass.edu/lfw/results.html.
19. Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of

Human Genetics 7 (1936) 179–188
20. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning.

Springer (2001)

16 OSSML

21. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20 (1995)
273–297

22. Petersen, K.B., Pedersen, M.S.: The matrix cookbook (2008) Version 20081110.
23. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human

actions from movies. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). (2008) 1–8

24. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with
matched background similarity. In: IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR). (2011)

