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Abstract

Scale invariant feature detectors often find stable scales
in only a few image pixels. Consequently, methods for
feature matching typically choose one of two extreme op-
tions: matching a sparse set of scale invariant features, or
dense matching using arbitrary scales. In this paper we
turn our attention to the overwhelming majority of pixels,
those where stable scales are not found by standard tech-
niques. We ask, is scale-selection necessary for these pix-
els, when dense, scale-invariant matching is required and if
so, how can it be achieved? We make the following contri-
butions: (i) We show that features computed over different
scales, even in low-contrast areas, can be different; select-
ing a single scale, arbitrarily or otherwise, may lead to poor
matches when the images have different scales. (ii) We show
that representing each pixel as a set of SIFTs, extracted at
multiple scales, allows for far better matches than single-
scale descriptors, but at a computational price. Finally, (iii)
we demonstrate that each such set may be accurately repre-
sented by a low-dimensional, linear subspace. A subspace-
to-point mapping may further be used to produce a novel
descriptor representation, the Scale-Less SIFT (SLS), as an
alternative to single-scale descriptors. These claims are
verified by quantitative and qualitative tests, demonstrating
significant improvements over existing methods.

1. Introduction

Over the past decade and a half, scale invariant feature de-
tectors, such as the Harris-Laplace [21] and robust descrip-
tors such as the SIFT [18], have played pivotal roles in ma-
turing Computer Vision systems. The key idea is that at
each interest point, one (or few) scales are selected based
on a scale-invariant function (e.g., the Laplacian of Gaus-
sians). Presumably, local extrema of this function occur at
the same scales for the same feature in different images al-
lowing the features to be matched across images in different
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Figure 1. Dense matches of different objects in different scales.
Top: Left and Right input images. Bottom: Left image warped
onto Right using the recovered flows: Using DSIFT (bottom left)
and our SLS descriptor (bottom right), overlaid on the Right and
manually cropped to demonstrate the alignment. DSIFT fails to
capture the scale differences and produces an output in the same
scale as the input. SLS captures scale changes at each pixel: the
output produced by using SLS has the appearance of the Left im-
age in the scale and position of the Right.

scales [23]. A typical image, however, often has relatively
few pixels for which such scales may be reliably selected.
Consequently, matching of scale invariant features has so
far been applied mostly to few pixels in each image.

When dense correspondences are required, traditional
methods restrict themselves to using pixels or pixel patches,
filtered or otherwise (see, e.g., [11]). Alternatively, feature
descriptors may be computed for all the pixels in the image
(e.g., [27]). These are designed to be robust to a range of
geometric and photometric image transformation. One such
example is the Dense-SIFT (DSIFT) descriptor [29] which
is extracted at a single scale for all the pixels in the image.
Establishing correspondences between two images is then
performed either locally or by using global optimization
schemes such as the SIFT-Flow algorithm [16, 17]. Such
methods, however, all implicitly assume that features in the
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two images share the same, or sufficiently similar, scales.
As shown in Fig. 1, when this does not hold, correspon-
dence estimation fails.

In this paper we focus on those pixels for which a method
for selecting well defined scales is not known. Making up
most of the image, these are the pixels for which local im-
age intensities do not vary sufficiently to provide strong ex-
trema in the scale selection function. This work presents the
following contributions:

1. We show that even in low contrast areas of the im-
age, where scale-selection is difficult, descriptors may
change their values from one scale to the next. Conse-
quently, selecting an arbitrary single scale may lead to
false matches when two images have different scales.

2. We propose representing each pixel by a set of SIFT
descriptors extracted at multiple scales and matched
from one image to the next using set-to-set similarities.
The computational cost of matching more descriptors
is balanced by a substantial boost in accuracy.

3. We demonstrate that each such set of SIFTs resides on
a low-dimensional subspace. We further show that the
subspace-to-point mapping of [4, 5], provides a means
of representing these subspaces as a novel feature de-
scriptor, the Scale-Less-SIFT (SLS).

These set-based, multi-scale SIFT representations are tested
on dense correspondence estimation problems with images
separated by wide scale differences and changing viewing
conditions and shown to significantly outperform existing
methods both qualitatively and quantitatively.

2. Previous work

Objects and scenes appear in images in different scales. In
order to correctly describe features when these scales are
unknown, one must consider multiple scales for each fea-
ture point. Since the early 90s automatic scale selection
techniques have been proposed which seek for each fea-
ture point a stable, characteristic scale. They thus augment
earlier scale-space methods by choosing one scale for each
feature for the purpose of both reducing the computational
burden of higher level visual systems, as well as improving
their performance by focusing on more relevant information
(See [14] for more on these early approaches).

Lindeberg [15] suggested seeking for each feature its “in-
teresting scales”; that is, scales which reflect a characteris-
tic size of a feature. He proposed selecting these scales by
choosing the extrema in the Laplacian of Gaussian (LoG)
function computed over the image scales. Pixels of local
extrema may additionally be rejected if their LoG value is

lower than a predefined threshold. This is applied in or-
der to ensure that unstable, low-contrast points are not se-
lected. An efficient approximation to the LoG function is
based on differences of Gaussian (DoG) filters (e.g., [18]).
For a given image, three sets of sub-octave, DoG filters are
produced. The resulting 3D structure (x, y and scale) is
then scanned, searching for pixels with higher or lower val-
ues than their 26 space-scale neighbors. Coordinate local-
ization is then performed in order to obtain more accurate
pixel locations as well as, again, reject unstable detections
located in low contrast areas or near edges.

Scale selection is sometimes performed along-side spatial
localization. The Harris-Laplace detector [21], for exam-
ple, uses a scale-adapted Harris corner detector to localize
points spatially and LoG filter extrema to localize points in
scale. These two steps are performed in an iterative pro-
cedure which searches for the joint peaks of these two val-
ues. Here too, points are rejected if they fail to produce
responses stronger than a given threshold.

The methods mentioned above, as well as similar tech-
niques, all typically produce a small set of interest points lo-
cated near corner structures in the image. Mikolajczyk [20]
reports that under a scale change factor of 4.4 the percent
of pixels for which a scale is detected is as little as 38% for
the DoG detector of which in only 10.6%, the detected scale
was correct.

Several existing methods use few invariant features to seed a
search for dense matches between different views of a wide-
baseline stereo system [7, 26, 31]. As far as we know, how-
ever, none of these methods is designed to provide dense
correspondences across scale differences. A noteworthy ex-
ception is the work of [25] which uses few scale-invariant
features to locate an object in an image and then produces
dense matches along with accurate segmentations. Their
method, however, relies on a global alignment scheme to
overcome the main scale differences before dense matching.
It is thus unclear how it performs when no such alignment
is possible (e.g., several independent scene motions).

In [12] scale invariant descriptors (SID) are proposed with-
out requiring the estimation of image scale. A main advan-
tage of SID is that they are applicable to a broader range of
image structures, such as edges, for which scale selection
is unreliable. Our experiments here show that SID are less
capable of matching across different scenes than the SIFT
descriptors underlying our representation. In [28], scale se-
lection is avoided by computing multi-scale fractal features,
developed for the purpose of texture classification.

Dense SIFT - no scale selection. When dense matching
is required, a common approach is to forgo scale estima-
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Figure 2. Effects of scale differences on DSIFT vs. our own SLS descriptor. Left images warped onto right image using correspondences
obtained by the SIFT-Flow algorithm [16, 17] and the DSIFT descriptor, compared against the SLS descriptor (Sec. 3.3). The results in the
bottom two rows should appear similar to the top-right image. DSIFT descriptors provide some scale invariance despite a single arbitrary
scale selection (left column, middle row). The SLS descriptors provide scale invariance across far greater scale differences (bottom).

tion, producing instead descriptors on a regular grid using
constant, typically arbitrarily selected, scales. One such ex-
ample is the efficient DAISY descriptors of [27] or, more
related to this work, Dense-SIFT (DSIFT) descriptors [29].

In object recognition tasks, such regular sampling strategies
for descriptor generation have been shown to outperform
systems utilizing invariant features generated at stable co-
ordinates and scales [24]. This is may be due to the benefits
of having descriptors for many pixels over accurate scales
for just a few.

Existing work on dense matching between two images
has thus far largely ignored the issue of scale invariance.
The SIFT-Flow system of [16, 17], for example, produces
DSIFT descriptors at each pixel location. These descrip-
tors are then matched between two images, taking advan-
tage of the robustness of the SIFT representation, without
attempting to provide additional scale invariance. Match-
ing is performed using a modified optical flow formula-
tion [8]. Although the DSIFT descriptors used by the SIFT-
Flow algorithm provide some scale invariance, this quickly
degrades as the scale differences between the two images
increase (Fig. 2). An additional related method is the Gen-
eralized Patch-Match [2], designed for matching descriptors
extracted at each pixel, here, with an emphasis on speed.

The methods described above provide means for matching
descriptors produced on dense regular grids. In the ab-
sence of per-pixel scale-invariant descriptors, they are not
designed to handle large scale differences. In this paper we
extend these approaches by discussing the utility of multiple
SIFT descriptors at each pixel, and their representations.

3. The behavior of SIFT across scales

We begin by considering how the values of multiple SIFT
descriptors vary through scales. The scale space L(x, y, σ)
of an image I(x, y) is defined by the convolution of I(x, y)
with the variable-scale Gaussian G(x, y, σ) [13], where:

L(x, y, σ) = G(x, y, σ) ? I(x, y)

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

Typically (Section 2), a feature detector selects coordinates
in space x, y and scale σ, from which a single SIFT de-
scriptor hσ = h(x, y, σ) is then extracted [18]. Although
sometimes more than one scale is selected, they are usually
treated independently of each other.

Here, we consider instead all the descriptors hσi
=

h(x, y, σi), where σi is taken from a discrete set of scales
{σ1, ..., σk}. Our chief assumption is that correspond-
ing pixels should exhibit a similar behavior throughout
scales. In other words, the same pattern of SIFT descriptors
h(x, y, σi) should be apparent when examining correspond-
ing pixels. The challenge then becomes how to effectively
capture this pattern of change across scales?

3.1. SIFT sets

Rather than selecting a single scale for each pixel we com-
pute multiple descriptors at multiple scales and represent
pixels as sets of SIFT descriptors. Formally, denote by p
and p′ a pair of corresponding pixels in images I and I ′,
respectively. For a set of scales σ1, . . . , σk, the two pix-
els are represented by the sets H = [hσ1

, . . . , hσk
] and

H ′ =
[
h′σ1

, . . . , h′σk

]
.

To match the pixels of two images, a set-to-set similarity
definition is required. There are quite a few such measures



available, e.g., [30]. As we will show in Sec. 4, however,
highly accurate matching results are obtained by consider-
ing the straightforward “min-dist” measure [30], defined as
follows.

mindist(p, p′) = min
i,j

dist(hσi
, h′σj

). (1)

Comparing two pixels represented as n SIFT descriptors,
would require O(128 × n2) operations, which may be
prohibitive if the sets are large. Often, however, only a
few scales are required to provide accurate representations
(Sec. 4). This is explained by the following assumption.

Assumption 1 - Corresponding points are similar at mul-
tiple scales. Our underlying assumption is that there ex-
ist a set of scales σ1, . . . , σk for image I and a set of
scales σ′1, . . . , σ

′
k for image I ′, such that the descriptors

produced at the two pixels are equal (or else sufficiently
similar): hσi

= h′σ′
i
. Let H = [hσ1

, . . . , hσk
] and H ′ =[

h′σ′
1
, . . . , h′σ′

k

]
, then we can write H = H ′.

This equality, however, holds only when all the scales
σ1, . . . , σk and σ′1, . . . , σ

′
k correspond exactly. In practice,

we do not have these correspondences and instead sample
the scales at fixed intervals for all images. Thus, the set
of scales in one image may be interleaved with the other.
Because SIFT values change gradually with scale, only
few scales need to be sampled to provide similar descrip-
tors even in such cases. This is illustrated in Fig. 3 which
demonstrates SIFT values in multiple scales of two images
separated by a ×2 scale factor. SIFTs in the Right image
match the SIFTs in the Left image by a scale offset.

3.2. SIFT subspaces

An alternative, Geometric representation for sets of SIFT
descriptors, is obtained by considering the linear subspace
on which these SIFTs reside. Subspaces have often been
used to represent varying information. Some recent exam-
ples are listed in [4, 5]. Here, we show that low-dimensional
linear subspaces are highly capable of capturing the scale-
varying values of SIFT descriptors.

Assumption 2 - Descriptors computed at multiple scales
of the same point span a linear subspace. The SIFT de-
scriptor consists of gradient histograms. In many cases the
local statistics of these gradients are equivalent at different
scales. For example, in homogeneous, low-contrast regions
or areas of stationary textures, the size of the local neigh-
borhood does not change the distribution of gradients. In
these cases we get hσi

= hσj
for σi 6= σj .

Scale 10

Scale 35 Scale 35

Scale 10

Figure 3. SIFT behavior through scales. Top: Two images sepa-
rated by a ×2 scale factor. SIFT descriptors are extracted at a low
contrast area where no interest point was detected, at scales rang-
ing from 10 to 35. Bottom: SIFT descriptor histograms. These
demonstrate that (a) SIFTs from the Left image match those at
higher scales in the Right, implying that setting the same scale to
all pixels in both images may lead to poor matches. (b) Even in
low contrast areas, SIFT values are not uniform. Finally, (c) the
values of the SIFT descriptors gradually change through scales.

In other cases, the statistics do change with the scale, how-
ever, if we sample the scales densely enough these changes
are gradual and monotonic (Fig. 3). In such cases we get
hσi

=
∑
j wijhσj

, where wij = 0 when hσi
does not de-

pend on hσj
and wij = scalar otherwise. In other words,

each descriptor can be represented as a linear combination
of several other descriptors at different scales. This occurs
when the regions surrounding the patch are piecewise sta-
tionary. Enlarging the window size by small steps maintains
similar statistics within each window.

The observations above suggest that the set of descriptors
hσ1

, . . . , hσk
approximately lie on a linear subspace:

H = [hσ1
, . . . , hσk

] =
[
ĥ1, . . . , ĥb

]
W = ĤW (2)

where ĥ1, . . . , ĥb are basis vectors spanning the space of
descriptors and W is a matrix of coefficients.

Combining the two assumptions. According to assump-
tion 1, for two corresponding pixels, if we knew the set of
corresponding scales we would have H = H ′. This implies
that the two sets of descriptors share the same spanning ba-
sis, i.e., Ĥ = Ĥ ′. While we do not know the scales required
to constructH andH ′, according to assumption 2 this is not
crucial. As long as we sample the scale densely enough we
can compute the bases Ĥ and Ĥ ′.

The distance between a pair of pixels, p and p′, can be
measured by the distance between the corresponding sub-
spaces Hp and Hp′ , represented as matrices Ĥ and Ĥ ′



with orthonormal columns. There are several possible def-
initions to the distance dist2(Hp,Hp′) between two linear
subspaces [9]. Here we use the Projection Frobenius Norm
(Projection F-Norm), defined as:

dist2(Hp,Hp′) = || sinθ||22 (3)

Where sinθ is the vector of sines of the principal angles
between the two subspacesHp andHp′ . This may be com-
puted by considering the cosines of the principal angles
obtained from SV D(ĤT Ĥ ′) in O(128 × d2) operations,
where d is the subspace dimension.

3.3. The Scale-Less SIFT (SLS) representation

It is often beneficial to have a point representation for each
pixel, rather than a subspace. Such is the case when, for
example, efficient indexing is required. We therefore em-
ploy the subspace-to-point mapping proposed by Basri et
al. [3, 4, 5] to produce the Scale-Less SIFT (SLS) descrip-
tor for each such subspace.

Specifically, consider the subspace Hp produced at pixel
p, represented as a 128 × d matrix Ĥ with orthonormal
columns. We produce the SLS representation by mapping
this subspace to a point P by rearranging the elements of the
projection matrix A = ĤĤT using the following operator:

P , SLS(Ĥp) =

(
a11√
2
, a12, ..., a1d,

a22√
2
, a23, ...,

add√
2

)T
(4)

Where aij is the element (i, j) in matrix A. A key prop-
erty of this mapping is that the distance between two such
mapped subspaces, P and P ′ is monotonic with respect to
the Projection F-Norm between the original subspaces Hp
andHp′ [4, 5]. That is:

||P − P ′||2 = µdist2(Hp,Hp′) (5)

for a constant µ. Point P thus captures the behavior of SIFT
descriptors throughout scale space, at a quadratic cost in
the dimension of the descriptors. Here, we employ the SLS
descriptor, P , as a surrogate for the subspace Hp without
making further adjustments to the method used to compute
correspondences.

4. Experiments

Our evaluation code was written in MATLAB, using the
SIFT code of [29] and the SID code of [12]. Flow was es-
timated using the original SIFT-Flow code [16, 17], with
either its original DSIFT, or alternatively using SID, and
our own SLS descriptor. Our SLS results were produced
using 8D, linear subspaces obtained by standard PCA. We

used 20 scales at each pixel, linearly distributed in the range
[0.5, 12]. Note that the size of the SLS representation and
the matching time depends only on the dimension of the
underlying SIFT descriptor (Sec. 3.3).

Quantitative results on Middlebury data [1]. We com-
pare our SLS with both SID and DSIFT, on the Middlebury
optical flow set. Since this data does not include significant
scale changes, we modify it by rescaling the left and right
images by factors of 0.7 and 0.2, respectively. The quality
of an estimated match was measured using both angular and
endpoint errors (± SD) [1]. Table 1 shows that both multi-
scale approaches outperform the single-scale DSIFT signif-
icantly. Furthermore, our SLS descriptors lead to lower er-
rors when compared to the descriptors of [12].

Qualitative results. We present a visual comparison of
the quality of the estimated flows, using each of the three
alternatives: DSIFT, SID and our SLS descriptor. Our re-
sults present a Left-image (source) warped onto the Right-
image (target) according to the estimated flows. SLS results
in Fig. 4 and 5 are further cropped to show areas of high
confidence matches (see below).

We ran tests on image pairs with independent scene motion
(Fig. 4) and images of different scenes with similar appear-
ances (Fig. 5). All these images include scale differences,
often extreme. We know of no previous method which suc-
cessfully presents dense correspondences on such challeng-
ing image pairs. Our results show that the SLS enables ac-
curate dense correspondences even under extreme changes
in scale.

In Fig. 4 DSIFT typically manages to lock onto a single
scale quite well, while missing other scale changes in the
scene. The SLS descriptor better captures the scale-varying
behavior at each pixel and so manages to better match pixels
at different scales with only local misalignments.

Fig. 1 and 5 present matches estimated between images
of different scenes. A good result would have the appear-
ance of the Left (source) images, in the scales and poses
of the Right (target) images. As can be seen, the DSIFT
and SID descriptors either leave the source in its original
scale, unchanged, or else completely fail to produce coher-
ent matches. Although some artifacts are visible in the SLS
results (right column) the results present coherent scenes in
the target image scales.

The influence of set-size and subspace dimension. We
next evaluate the influence of various parameters on fea-
ture matching accuracy and run-time. Here, we use images
from the Berkeley set [19]. Images were rescaled by a ran-
domly determined scale factor, uniformly distributed in the
range [1.5 . . . 4]. We report the mean±SD accuracy and



Angular error Endpoint error
Data DISFT SID SLS DISFT SID SLS

Dimetrodon 26.6±36.8 0.16±0.3 0.17±0.5 108.9±42.1 0.70±0.3 0.80±0.4
Grove2 7.06±5.7 0.66±4.4 0.15±0.3 59.07±40.9 1.50±5.0 0.77±0.4
Grove3 5.23±4.2 1.62±6.9 0.15±0.4 108.95±76.5 4.48±10.5 0.87±0.4
Hydrangea 4.24±4.5 0.32±0.6 0.22±0.8 33.80±32.2 1.59±2.8 0.91±1.1
RubberWhale 24.63±26.9 0.16±0.3 0.15±0.3 116.83±57.7 0.73±1.1 0.80±0.4
Urban2 6.24±7.6 0.37±2.7 0.32±1.3 54.8±54.0 1.33±3.8 1.51±5.4
Urban3 10.26±14.0 0.27±0.6 0.35±0.9 91.81±66.1 1.55±3.7 9.41±24.6
Venus 4.30±4.9 0.24±0.6 0.23±0.5 31.52±34.0 1.16±3.8 0.74±0.3

Table 1. Quantitative results on rescaled Middlebury data [1]. Both angular and endpoint errors (± SD) show that multiple scales
(SID [12] & SLS) are always advantageous over a single scale (DISFT [29]) with SLS outperforming SID on most data-sets.

Left Right DSIFT [29] SID [12] SLS

Figure 4. Dense flow with scene motion. Image pairs presenting different scale changes in different parts of the scene, due to camera and
scene motion. Correspondences from Left to Right images estimated using [17], comparing DSIFT, SID and our SLS, shown here cropped
to the area of high confidence matches. See text for details.

Left Right DSIFT [29] SID [12] SLS

Figure 5. Dense flow between different scenes in different scales. Objects in the results should have the same scale and position as the
target, Right images and different from the source, Left images. See text for details.

run-time, for estimating the correspondences of pixels on
regular grids, between each such image pair. Accuracy is
measured as the ratio of the times a pixel’s nearest neighbor
is its ground truth matching pixel, to the total number of
pixels. Runtime measures the time required for matching.

Fig. 6 presents the following results. (1) Point-to-
point with scale selection: A single scale is selected
for each pixel and used to extract a DSIFT descrip-
tor. Scale selection follows [18], by choosing the ex-

tremum DoG scale, but ignoring any additional filtering.
(2) Set-to-set, variable number of scales: Using the
min-dist measure (Eq. 1) to compute pixel similarities.
The number of scales sampled was varied, sampling one
to ten DSIFT descriptors from scales distributed linearly
in the range of [0.5, 12] using the MATLAB expression
linspace(0.5,12,num_sigma);. (3) Subspace-to-
subspace, variable number of scales: Using the same sets
as in (2) to fit a linear subspace for each pixel (using PCA).
Subspace dimensions equal the number of scales sampled.
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Figure 6. Accuracy vs. runtime. Please see text for more details.

The distance between two subspaces was computed using
Eq. (3). (4) Subspace-to-subspace, variable dimension:
Same as (3), but here 10 DSIFT descriptors were used to fit
subspaces varying in dimension from 1 to 10.

From Fig. 6 it can be seen that when few scales are sam-
pled, a single, carefully selected scale provides better per-
formance than an arbitrarily selected scale. This advan-
tage disappears at 3 scales; accuracy increasing rapidly with
more scales sampled. By 5 scales, matching quality is near
perfect for the multi-scale representations. The accuracy of
the subspace-to-subspace method testifies that these SIFT
sets indeed lie close to a low dimensional linear subspace.
In fact, it seems that a 4D linear subspace manages to ac-
curately capture scale varying SIFT values. We note that
when a single scale is considered, the set-to-set similarity
is equivalent to comparing DSIFT descriptors at an arbi-
trary scale and the subspace-to-subspace distance reduces
to a sine similarity of these two DSIFT descriptors. Both
are far worse than choosing the single scale at each pixel.

Run-times for the set-based methods are higher than com-
paring single points. We made no attempt to optimize our
code, using built-in MATLAB functions for all our process-
ing, and so better performance may likely be obtained. The
complexity of directly comparing two sets (Sec. 3.1) or two
subspaces (Sec. 3.2), however, limits the effectiveness of
such optimizations. Yet although the set based methods are
more computationally expensive, their significantly higher
accuracy makes them an alternative worth considering.

Cropping the result to its ROI. When matching views
of significantly different scales, warping one image to the
other introduces the problem of cropping the image to its
region of interest (ROI). In [25] this problem is avoided by
assuming that the high resolution image is neatly cropped.
Without this knowledge, the warped high resolution image
would include noisy, “smeared” areas where it does not
overlap the low resolution image (see Fig. 7).

Here we automatically select the region of high confidence
matches, as follows. Given images I and I ′, we compute
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Figure 7. Auto-crop to the ROI. Dense matches directly formed,
without estimating Epipolar Geometry, between the first and last
images of the Oxford Corridor sequence [10] (left column). On
the right, Notice the large areas where no information is avail-
able in the Right image to correspond with parts of the Left im-
age. These areas are automatically cropped to include only the
area onto which pixels from the second image were warped.

the two dense flows, from I to I ′ and then back, from I ′ to
I . In both cases we count for each pixel in the target image,
the number of source image pixels which were mapped onto
it. We threshold the pixels by these numbers and then apply
morphological operators to remove small clusters of target
pixels. Finally, the ROI of image I is selected as the bound-
ing box of the remaining target pixels obtained by warping
image I ′, and vice versa. This is demonstrated in Fig. 7. No
optimization was performed on this process and it is applied
without modification to all our images.

5. Conclusions

The scale selection methods developed since the early 90s
were largely motivated by a need to reduce computational
cost as well as the assumption that few scales can be reli-
ably matched [14]. In this paper we show that images con-
tain valuable information in multiple scales. Thus, scale
selection may be detrimental to the quality of the results
when dense correspondences are required. The alternative,
extracting SIFT descriptors at multiple scales, significantly
improves results but at a computational price. We exam-
ine how such multiple scales may be compared, represent-
ing them as sets or low-dimensional, linear subspaces. In
both cases multiple SIFTs outperform single descriptors in
pixel matching tests by wide margins. Finally, we present a
point representation for these subspaces, the SLS descrip-
tor, which we use as a stand-in for DSIFT in the SIFT-
Flow method, improving correspondences on a wide range
of challenging viewing conditions.

We focus on the SIFT descriptor because of its popularity
and its convenient property of changing gradually through
scales. It remains to be seen how well the same ap-
proach carries over to other successful descriptors, includ-



ing DAISY [27], SURF [6], GLOH [22], and others. Exten-
sions to affine invariance also require study. Lastly, exam-
ining the impact of this approach in other Computer Vision
problems, chiefly, Object Recognition, must be explored.
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