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SIFTing through Scales
Tal Hassner, Shay Filosof, Viki Mayzels, and Lihi Zelnik-Manor

Abstract—Scale invariant feature detectors often find stable scales in only a few image pixels. Consequently, methods for feature
matching typically choose one of two extreme options: matching a sparse set of scale invariant features, or dense matching using
arbitrary scales. In this paper, we turn our attention to the overwhelming majority of pixels, those where stable scales are not
found by standard techniques. We ask, is scale-selection necessary for these pixels, when dense, scale-invariant matching
is required and if so, how can it be achieved? We make the following contributions: (i) We show that features computed over
different scales, even in low-contrast areas, can be different and selecting a single scale, arbitrarily or otherwise, may lead to poor
matches when the images have different scales. (ii) We show that representing each pixel as a set of SIFTs, extracted at multiple
scales, allows for far better matches than single-scale descriptors, but at a computational price. Finally, (iii) we demonstrate that
each such set may be accurately represented by a low-dimensional, linear subspace. A subspace-to-point mapping may further
be used to produce a novel descriptor representation, the Scale-Less SIFT (SLS), as an alternative to single-scale descriptors.
These claims are verified by quantitative and qualitative tests, demonstrating significant improvements over existing methods. A
preliminary version of this work appeared in [1].

Index Terms—I.2.10 Vision and Scene Understanding, I.2.10.g Representations, data structures, and transforms
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1 INTRODUCTION

O VER the past decade and a half, scale invariant
feature detectors, such as the Harris-Laplace [2]

and robust descriptors such as the SIFT [3], have
played pivotal roles in maturing Computer Vision
systems. The key idea is that at each interest point,
one (or few) scales are selected based on a scale
covariant function (e.g., the Laplacian of Gaussians).
Presumably, local extrema of this function occur at the
same scales for the same feature in different images
allowing the features to be matched across images in
different scales [4]. A typical image, however, often
has relatively few pixels for which such scales may
be reliably selected. Consequently, matching of scale
invariant features has so far been applied mostly to a
few pixels in each image.

When dense correspondences are required, tradi-
tional methods restrict themselves to using pixels or
pixel patches, filtered or otherwise (see, e.g., [5]).
Alternatively, feature descriptors may be computed
for all the pixels in the image (e.g., [6]). These are
designed to be robust to a range of geometric and
photometric image transformations. One such exam-
ple is the Dense-SIFT (DSIFT) descriptor [7] which
is extracted at a single scale for all the pixels in
the image. Establishing correspondences between two
images is then performed either locally or by using
global optimization schemes such as SIFT flow [8],
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Fig. 1. Dense matches of different objects in dif-
ferent scales. Top: Source and Target input images.
Bottom: Source image warped onto Target using the
recovered flows: Using DSIFT (bottom left) and our
SLS descriptor (bottom right), overlaid on the Target
and manually cropped to demonstrate the alignment.
DSIFT fails to capture the scale differences and pro-
duces an output in the same scale as the input. SLS
captures scale changes at each pixel: the output pro-
duced by using SLS has the appearance of the Source
image in the scale and position of the Target.

[9]. Such methods, however, all implicitly assume
that features in the two images share the same, or
sufficiently similar, scales. As shown in Fig. 1, when
this does not hold, correspondence estimation fails.

In this paper, we focus on those pixels for which
a method for selecting well defined scales is not
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known. Making up most of the image, these are the
pixels for which local image intensities do not vary
sufficiently to provide strong extrema in the scale
selection function. This work presents the following
contributions:

1) We show that even in low contrast areas of the
image, where scale-selection is difficult, descrip-
tors may change their values from one scale
to the next. Consequently, selecting an arbitrary
single scale may lead to false matches when two
images have different scales.

2) We propose representing each pixel by a set of
SIFT descriptors extracted at multiple scales and
matched from one image to the next using set-to-
set similarities. The computational cost of match-
ing more descriptors is balanced by a substantial
boost in accuracy.

3) We demonstrate that each such set of SIFTs
resides on a low-dimensional subspace. We fur-
ther show that the subspace-to-point mapping
of [10], [11], provides a means of representing
these subspaces as a novel feature descriptor, the
Scale-Less-SIFT (SLS).

These set-based, multiscale SIFT representations are
tested on dense correspondence estimation problems
with images separated by wide scale differences and
changing viewing conditions. They are shown to sig-
nificantly outperform existing methods both qualita-
tively and quantitatively.

2 PREVIOUS WORK

Objects and scenes appear in images in different
scales. In order to correctly describe features when
these scales are unknown, one must consider mul-
tiple scales for each feature point. Since the early
1990s, automatic scale selection techniques have been
proposed which seek for each feature point a stable,
characteristic scale. They, therefore, augment earlier
scale-space methods by choosing one scale for each
feature for the purpose of both reducing the compu-
tational burden of higher level visual systems, as well
as improving their performance by focusing on more
relevant information (See [12] for more on these early
approaches).

Lindeberg [13] suggested seeking for each feature
its “interesting scales”; that is, scales which reflect a
characteristic size of a feature. He proposed selecting
these scales by choosing the extrema in the Laplacian
of Gaussian (LoG) function computed over the image
scales. Pixels of local extrema may additionally be
rejected if their LoG value is lower than a predefined
threshold. This is applied in order to ensure that
unstable, low-contrast points are not selected. An
efficient approximation to the LoG function is based
on differences of Gaussian (DoG) filters (e.g., [3]). For
a given image, three sets of sub-octave, DoG filters are
produced. The resulting 3D structure (x, y and scale)

is then scanned and searched for pixels with higher
or lower values than their 26 space-scale neighbors.
Coordinate localization is then performed in order to
obtain more accurate pixel locations as well as, again,
to reject unstable detections located in low contrast
areas or near edges.

Scale selection is sometimes performed concur-
rently with spatial localization. The Harris-Laplace
detector [2], for example, uses a scale-adapted Harris
corner detector to localize points spatially and LoG
filter extrema to localize points in scale. These two
steps are performed in an iterative procedure which
searches for the joint peaks of these two functions.
Here too, points are rejected if they fail to produce
responses stronger than a given threshold.

The methods mentioned above, as well as similar
techniques, all typically produce a small set of interest
points located near corner structures in the image.
Mikolajczyk [14] reports that under a scale change
factor of 4.4, the percent of pixels for which a scale
is detected is as low as 38% for the DoG detector of
which in only 10.6% of the cases, the detected scale
was correct.

Several existing methods use few invariant features
to seed a search for dense matches between different
views of a wide-baseline stereo system [15], [16], [17].
As far as we know, however, none of these methods
is designed to provide dense correspondences across
scale differences. A noteworthy exception is the work
of [18] which uses few scale-invariant features to
locate an object in an image and then produces dense
matches along with accurate segmentations. Their
method, however, relies on a global alignment scheme
to overcome the main scale differences before dense
matching. It is thus unclear how it performs when no
such alignment is possible (e.g., several independent
scene motions).

In [19] scale invariant descriptors (SID) are pro-
posed without requiring the estimation of image scale.
A main advantage of SID is that they are applicable to
a broader range of image structures, such as edges, for
which scale selection is unreliable. Our experiments
here show that SID are less capable of matching across
different scenes than the SIFT descriptors underlying
our representation. In [20], scale selection is avoided
by computing multiscale fractal features, developed
for the purpose of texture classification.

Dense SIFT - no scale selection. When dense
matching is required, a common approach is to forgo
scale estimation; producing, instead, descriptors on a
regular grid using constant, typically arbitrarily se-
lected scales. One such example is the efficient DAISY
descriptors of [6] or, more related to this work, Dense-
SIFT (DSIFT) descriptors [7].

In object recognition tasks, such regular sampling
strategies for descriptor generation have been shown
to outperform systems utilizing invariant features
generated at stable coordinates and scales [21]. This
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Fig. 2. Effects of scale differences on DSIFT vs. our own SLS descriptor. Source images warped onto Target
image using correspondences obtained by the SIFT flow algorithm [8], [9] and the DSIFT descriptor, compared
against the SLS descriptor (Sec. 3.3). The results in the bottom two rows should appear similar to the top-right
image. DSIFT descriptors provide some scale invariance despite a single arbitrary scale selection (left column,
middle row). The SLS descriptors provide scale invariance across far greater scale differences (bottom).

may be due to the benefit of having many descriptors
with possibly inaccurate scales over having a few de-
scriptors extracted where accurate scales are available.

Existing work on dense matching between two
images has thus far largely ignored the issue of
scale invariance. The SIFT flow system of [8], [9], for
example, produces DSIFT descriptors at each pixel
location. These descriptors are then matched between
two images, taking advantage of the robustness of the
SIFT representation, without attempting to provide
additional scale invariance. Matching is performed
using a modified optical flow formulation [22]. Al-
though the DSIFT descriptors used by the SIFT flow
algorithm provide some scale invariance, this quickly
degrades as the scale differences between the two
images increase (Fig. 2). An additional related method
is the Generalized Patch-Match [23], designed for
matching descriptors extracted at each pixel with an
emphasis on speed.

The methods described above provide the means
for matching descriptors produced on dense regular
grids. In the absence of per-pixel scale-invariant
descriptors, they are not designed to handle large
scale differences. In this paper, we extend these
approaches by discussing the utility of multiple SIFT
descriptors at each pixel, and their representations.

Dense scale selection. A number of very recent
methods have been proposed which, similar to our
own work, attempt to address the issue of scale
selection on a dense grid. In [24], a modified SIFT
flow process is described which attempts to assign
all image pixels with scale estimates. These scales
are then used to extract regular (scale varying) SIFT
descriptors. A different optimization altogether was
earlier proposed by [25] for the specific task of optical
flow estimation, when the two images are of the same
scene. Also designed for optical flow scenarios, the
method of [26] attempts to match pixel regions going

beyond scale differences and making an assumption
of smoothly varying affine transformations between
image regions. Finally, rather than estimating scales
during the correspondence estimation process, Tau
and Hassner [27] propose propagating the scales of
sparse interest points to all image pixels, thereby
providing a way of assigning pixels in homogenous
regions with scale estimates.

3 THE BEHAVIOR OF SIFT ACROSS SCALES

We begin by considering how the values of multiple
SIFT descriptors vary through scales. The scale space
L(x, y, σ) of an image I(x, y) is defined by the con-
volution of I(x, y) with the variable-scale Gaussian
G(x, y, σ) [28], where:

L(x, y, σ) = G(x, y, σ) ? I(x, y)

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

Typically (Sec. 2), a feature detector selects coordinates
in space x, y and scale σ, from which a single SIFT de-
scriptor hσ = h(x, y, σ) is then extracted [3]. Although
sometimes more than one scale is selected, they are
usually treated independently of each other.

Here, we consider instead all the descriptors hσi
=

h(x, y, σi), where σi is taken from a discrete set of
scales {σ1, ..., σk}. Our chief assumption is that cor-
responding pixels should exhibit a similar behavior
throughout scales. In other words, the same pattern of
SIFT descriptors h(x, y, σi) should be apparent when
examining corresponding pixels. The challenge then
becomes how to effectively capture this pattern of
change across scales?

3.1 SIFT sets
Rather than selecting a single scale for each pixel, we
compute multiple descriptors at multiple scales and
represent pixels as sets of SIFT descriptors. Formally,
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Fig. 3. SIFT behavior through scales. Two images
separated by a ×2 scale factor. Top: SIFT descriptors
extracted at a detected interest point, near a corner
structure in the image. Bottom: Descriptors extracted
at a low contrast region where no interest point was de-
tected. In both cases, SIFTs were extracted at scales
ranging from 10 to 35. We illustrate the SIFT descriptor
histogram values for each set of descriptors. These
demonstrate that (a) Even in low contrast areas, SIFT
values are not uniform and (b) the values of the SIFT
descriptors gradually change through scales.

denote by p and p′ a pair of corresponding pixels
in images I and I ′, respectively. For a set of scales
σ1, . . . , σk, the two pixels are represented by the sets
H = [hσ1

, . . . , hσk
] and H ′ =

[
h′σ1

, . . . , h′σk

]
.

To match the pixels of two images, a set-to-set
similarity definition is required. There are several such
measures available, e.g., [29]. As we will show in
Sec. 4, however, highly accurate matching results are
obtained by considering the straightforward “min-
dist” measure [29], defined as follows.

mindist(p, p′) = min
i,j

dist(hσi
, h′σj

). (1)

Comparing two pixels represented as n SIFT de-
scriptors, would require O(128×n2) operations, which
may be prohibitive if the sets are large. Often, how-
ever, only a few scales are required to provide accu-
rate representations (Sec. 4). This is explained by the
following assumption.

Assumption 1 - Corresponding points are similar
at multiple scales. Our underlying assumption is
that there exists a set of scales σ1, . . . , σk for image
I and a set of scales σ′1, . . . , σ

′
k for image I ′, such

that the descriptors produced at the two pixels are
equal (or else sufficiently similar): hσi = h′σ′

i
. Let

H = [hσ1
, . . . , hσk

] and H ′ =
[
h′σ′

1
, . . . , h′σ′

k

]
, then we

can write H ∼ H ′ (in practice, H = H ′, up to small,
potential, image sampling differences).

This equality, however, holds only when all the
scales σ1, . . . , σk and σ′1, . . . , σ

′
k correspond exactly. In

practice, we do not have these correspondences and
instead sample the scales at fixed intervals for all
images. Thus, the set of scales in one image may
be interleaved with the other. Because SIFT values
change gradually with scale, only a few scales need
to be sampled to provide similar descriptors even
in such cases. This is illustrated in Fig. 4 which
demonstrates SIFT values in multiple scales of two
images separated by a ×2 scale factor. SIFTs in the
Target image match the SIFTs in the Source image by
a scale offset.

3.2 SIFT subspaces
An alternative, geometric representation for sets of
SIFT descriptors, is obtained by considering the linear
subspace on which these SIFTs reside. Subspaces have
often been used to represent varying information.
Some recent examples are listed in [10], [11]. Here,
we show that low-dimensional linear subspaces are
highly capable of capturing the scale-varying values
of SIFT descriptors.

Assumption 2 - Descriptors computed at multiple
scales of the same point span a linear subspace.
The SIFT descriptor consists of gradient histograms.
In many cases, the local statistics of these gradients are
equivalent at different scales. For example, in homo-
geneous, low-contrast regions or areas of stationary
textures, the size of the local neighborhood does not
change the distribution of gradients. In these cases,
we get hσi

= hσj
for σi 6= σj .

In other cases, the statistics do change with the
scale. However, if we sample the scales densely
enough, these changes are gradual and monotonic
as illustrated in Fig. 3 and empirically demonstrated
in Fig. 4. When the descriptor is a smooth function
of scale, then, ideally, a descriptor from any scale
can be approximated well with a linear interpolation
from neighboring scales, i.e.: hσi

=
∑
j wijhσj

, where
wij are scalars. In other words, each descriptor can
be represented as a linear combination of several
other descriptors at different scales. This occurs when
the regions surrounding the patch are piecewise sta-
tionary. Enlarging the window size by small steps
maintains similar statistics within each window.

The observations above suggest that the set of de-
scriptors hσ1 , . . . , hσk

, when sampled densely enough,
approximately lie on a linear subspace:

H = [hσ1
, . . . , hσk

] =
[
ĥ1, . . . , ĥb

]
W = ĤW (2)

where ĥ1, . . . , ĥb are orthonormal basis vectors span-
ning the space of descriptors, Ĥ is the matrix with
these vectors as its columns and W is a matrix of
coefficients.



SIFTING THROUGH SCALES, IEEE TPAMI, JUNE 2014 5

600

500

400

300

200

100

0

Scale # in image #2
2       4        6        8      10      12      14     16      18     20      22     24

S
ca

le
 #

 i
n
 i

m
a
g
e 

#
1

2

4

6

8

10

12

14

16

18

20

22

24

700

600

500

400

300

200

100

0
2       4        6        8      10      12      14     16      18     20      22     24

2

4

6

8

10

12

14

16

18

20

22

24

Scale # in image #2

S
ca

le
 #

 i
n
 i

m
a
g
e 

#
1

600

500

400

300

200

100

0
2       4        6        8      10      12      14     16      18     20      22     24

2

4

6

8

10

12

14

16

18

20

22

24

Scale # in image #1

S
ca

le
 #

 i
n
 i

m
a
g
e 

#
1

(a) (b) (c)

Fig. 4. SIFT-to-SIFT distances between two sets. Top: Two images of different size. SIFT descriptors are
extracted at a low contrast area where no interest point was detected at 24 scales. Bottom: SIFT descriptor
distance matrix for the various scales. It demonstrates that matching differently scaled descriptors around
(a) corresponding points: SIFTs from the Target image match those at higher scales in the Source, implying
that setting the same scale to all pixels in both images may lead to poor matches. (b) non-corresponding points:
the distance between these descriptors is significantly larger, suggesting that they would not match. (c) the
same point: the self SIFT distance matrix shows that SIFTs change gradually across scales, suggesting that
descriptors are a smooth function of scale.

Descriptor to subspace mean distance. Our goal
for feature matching applications is for the descriptor
to be significantly closer to its own subspace rather
than to other subspaces. We demonstrate distance
comparison in Fig. 5. For each pixel in the image, a
SIFT subspace is estimated. The mean distance mp of
the descriptors in the set to the corresponding sub-
space represented as the matrix Ĥ with orthonormal
columns,

mp =
1

k

∑
1<i<k

||ĤT
p Ĥphσi

− hσi
||2, (3)

is illustrated for each pixel. This can be compared
with the mean distance of each descriptor to a non-
corresponding subspace across the image (not shown).
While the maximum descriptor to self-subspace Eu-
clidean distance is ≈ 40, the mean distance of the
descriptors to the non-corresponding subspaces is
≈ 300. This will enable proper feature matching, as
non-corresponding subspace distance is significantly
higher relatively to subspace matching inaccuracy.
The figure also shows us that large parts of the images
do not have the corner structures typically required
for the stable scale selection and scale invariant de-
scriptors. It is in those regions where scale is hard to
estimate that subspace fitting works best.

Combining the two assumptions. According to
assumption 1, for two corresponding pixels, if we
knew the set of corresponding scales we would have
H ∼ H ′ (or, ideally, H = H ′). This implies that the
two sets of descriptors share the same spanning basis,

i.e., Ĥ and Ĥ ′ represent the same subspace. While we
do not know the scales required to construct H and
H ′, according to assumption 2 this is not crucial. As
long as we sample the scale densely enough we can
compute the bases Ĥ and Ĥ ′. Of course, differently
scaled images would sometimes imply that scales
existing in one image are not present in the other,
and vice versa. If image statistics change monotoni-
cally, however, introduction of new scales should not
substantially change the subspace representation, as
we have observed in practice.

Minimum distance Subspace distance
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S
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Fig. 6. If SIFTs were 2D: A visualization of matching
2d SIFT descriptors, looking at multiple SIFTS taken
at different scales. (Left) The distance between two
sets is the distance between the two nearest points.
(Right) The distance between the two subspaces is
related to the angle between them. See Sec. 3.2.

The distance between a pair of pixels, p and p′, can
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Fig. 5. Descriptor to SIFT subspace mean distance. Left: The images. Right: Mean distance from the
descriptors in the set to the corresponding SIFT Subspace per pixel (Eq. 3). Large portions of the images do not
have the corner structures necessary for accurate scale selection and SIFT descriptor extraction. It is in those
image regions that subspaces fit best.

be measured by the distance between the correspond-
ing subspaces Hp and Hp′ represented as matrices Ĥ
and Ĥ ′ with orthonormal columns. There are several
possible definitions to the distance dist2(Hp,Hp′) be-
tween two linear subspaces [30]. Very often, however,
this is expressed by considering the principle angles
between subspaces (PABS) [31], defined as follows. The
principle angles

θ(Hp,Hp′) = [θ1, . . . , θb], θi ∈ [0, π/2], i = 1, . . . , b

between our subspaces Hp and Hp′ , are defined re-
cursively as

si = cos(θi) = max
x∈Hp

max
y∈Hp′

|xT y| = |xTi yi|,

subject to

||x|| = ||y|| = 1, xTxj = 0, yT yj = 0, j = 1, . . . , b− 1.

It can be shown [32], [31] that for the matrices
Ĥ and Ĥ ′ above, if UΣV T = SV D(ĤT Ĥ ′), is the
singular value decomposition (SVD) of ĤT Ĥ ′ into
unitary matrices U and V , and Σ is a b × b diagonal
matrix with real elements s1, . . . , sb in nonincreasing
order, then

cosθ(Hp,Hp′)↑ = S(ĤT Ĥ ′) = [s1, . . . , sb]
T

Here, cosθ(Hp,Hp′)↑ is the vector of principle angles
between the two subspaces, Hp and Hp′ , arranged in
nondecreasing order, and S(ĤT Ĥ ′) is the vector of
singular values of ĤT Ĥ ′ similarly arranged.

This is often used in practice to obtain the related
measure of subspace similarity, the Projection Frobenius
Norm (Projection F-Norm), which is defined by:

dist2(Hp,Hp′) = || sinθ(Hp,Hp′)||22, (4)

where the vector of sines, sinθ(Hp,Hp′), is obtained
following the result above in O(128 × d2) operations
using SVD, with d being the subspace dimension.
Fig. 6 illustrates the different interpretations of the
distances between the two sets of SIFT descriptors.

3.3 The Scale-Less SIFT (SLS) representation

It is often beneficial to have a point representation
for each pixel, rather than a subspace. Such is the
case when, for example, efficient indexing is required.
We, therefore, employ the subspace-to-point mapping
proposed by Basri et al. [33], [10], [11] to produce
the Scale-Less SIFT (SLS) descriptor for each such
subspace.

Specifically, the Projection F-Norm defined above
is named so, as it is closely related to the Frobenius
Norm of the orthographic projection matrices of the
two subspaces:

dist2(Hp,Hp′) = 1/2(||ĤĤT − Ĥ ′Ĥ ′T ||2F ) (5)

We should note that if the two subspaces were of
different dimensions, then an additional additive con-
stant reflecting the dimensions of the two subspaces
and the difference in dimensionality would also be
included on the right hand side of Eq. 5. Since here we
only use subspaces of the same intrinsic dimensions,
b, this constant equals zero [11].

Basri et al. noted that the Frobenius norm of a
square matrix A can be computed by summing the
squares of its entries, or ||A||2F =

∑
i,jA

2
i,j , and that

this can in turn be computed from the L2 norm of
a vector, a, obtained from rearranging the values of
A into one long vector. Since orthographic projection
matrices are symmetric, elements outside of the diago-
nal need only appear once in the vector representation
of A. This would additionally require that diagonal
elements be scaled by 1/

√
2 in order be correctly

represented in the expression of Eq. 5.
By using these results, we obtain the following

mapping of the subspace Hp, produced at pixel p and
represented as a 128 × d matrix Ĥ with orthonormal
columns, to a point representation P – our SLS rep-
resentation, as follows. The elements of the projection
matrix A = ĤĤT are rearranged, removing duplicate
elements outside the diagonal and scaling diagonal
values. More formally, we apply the operator:
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SLS(Ĥp) =

(
a11√

2
, a12, ..., a1d,

a22√
2
, a23, ...,

add√
2

)T
, (6)

where aij is the element (i, j) in matrix A.
In summary, we get that the distance between two

mapped subspaces, P and P ′ is monotonic with re-
spect to the Projection F-Norm between the original
subspaces Hp and Hp′ [10], [11]. That is:

||P − P ′||2 = 1/2 dist2(Hp,Hp′) (7)

Point P thus captures the behavior of SIFT descriptors
throughout scale space at pixel p, with a quadratic cost
in the dimension of the descriptors. Here, we employ
the SLS descriptor, P , as a surrogate for the subspace
Hp without making further adjustments to the method
used to compute correspondences.

3.4 SLS and dimensionality reduction

The subspace to point mapping which we use pro-
duces a representation which is quadratic in the size
of the original representation, 128D for the SIFTs used
here. When produced for each and every pixel in
the image, storage requirements can quickly grow
to be unreasonable. In [11], to address this issue,
the original data points were randomly projected,
multiple times, to very low dimensions, before the
mapping was applied. This resulted in a substantial
reduction in size of the mapped subspaces.

We found this procedure to be unsuitable for two
reasons. First, random projections require multiple
projections (and hence, multiple representations) for
each subspace; here, for reasons discussed above, we
aim for a single, point representation for each pixel.
Second, and more important, we have found that
better performance, in terms of both the size of the
final descriptor and the accuracy of the obtained flow,
can be obtained by an alternative approach.

Specifically, we perform dimensionality reduction
of the original SIFT descriptors descriptors before map-
ping them to points. To this end, given two images,
we begin by computing dense SIFT descriptors, at
multiple scales. The resulting pool of descriptors,
obtained from the two image pixels, in all scales, are
then used to compute an eigenspace of SIFTs. All
SIFTs are then projected to a lower dimension and
only then are the final SLS descriptors extracted –
using the dimension-reduced SIFTs.

The benefits of reducing the dimensionality of
SIFT descriptors by PCA is well known [35]. Here,
however, we compute the eigenspace of SIFTs using
descriptors extracted densely over space and scale,
to our knowledge, for the first time. Key to this
is the observation that if the descriptors extracted
from multiple scales around a particular pixel, all
reside on a low-dimensional subspace (assumption 2
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Fig. 7. Auto-crop to the ROI. Dense matches di-
rectly formed, without estimating Epipolar Geometry,
between the first and last images of the Oxford Corridor
sequence [34] (left column). On the right, notice the
large areas where no information is available in Image
2 to correspond with parts of Image 1. These areas
are automatically cropped to include only the area onto
which pixels from the second image were warped.

in Sec. 3.2), then their linear projections will likewise
span a subspace.

In practice, we use PCA to reduce SIFT dimensions
to 32D, which in turn, produces SLS descriptors of
528D (slightly more than four times the size of the
original SIFT). For computational purposes, the PCA
projection matrix was computed using a random sub-
set of all SIFT descriptors, from both images, at all
scales. We next provide results of a wide range of
experiments comparing the dimensionality reduced
SLS descriptor, PCA-SLS, to the full descriptor, as well
as a range of alternative representations.

3.5 Cropping to the region of interest
When matching views of significantly different scales,
warping one image to the other introduces the prob-
lem of cropping the image to its region of interest
(ROI). In [18] this problem is avoided by assuming
that the high resolution image is neatly cropped.
Without this knowledge, the warped high resolution
image would include noisy, “smeared” areas where it
does not overlap the low resolution image (see Fig. 7).

Here we automatically select the region of high
confidence matches, as follows. Given images I and
I ′, we compute the two dense flows, from I to I ′

and then back, from I ′ to I . In both cases, we count
for each pixel in the target image, the number of
source image pixels which were mapped onto it. We
threshold the pixels by these numbers and then apply
morphological operators to remove small clusters of
target pixels. Finally, the ROI of image I is selected
as the bounding box of the remaining target pix-
els obtained by warping image I ′, and vice versa.
This is demonstrated in Fig. 7. No optimization was
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TABLE 1
Results on the scaled-Middlebury benchmark. Angular errors (AE) and endpoint errors (EE), ± SD, on

resized images from the Middlebury benchmark [36]. Lower scores are better; bold numbers are best scoring.

Data DSIFT [7] SID [19] Seg. SIFT [37] Seg. SID [37] SLS SLS-PCA SLS-PCA-1
Angular Errors ± SD

Dimetrodon 3.13 ± 4.0 0.16 ±0.3 2.45 ± 2.8 0.23 ± 0.7 0.17 ±0.5 0.18 ± 0.5 0.19 ± 0.4
Grove2 3.89 ± 11.9 0.66 ±4.4 4.77 ± 15.3 0.22 ± 0.6 0.15 ±0.3 0.17 ± 0.4 0.17 ± 0.4
Grove3 2.67 ± 2.8 1.62 ±6.9 8.93 ± 15.6 0.22 ± 0.6 0.15 ±0.4 0.18 ± 0.5 0.18 ± 0.5
Hydrangea 9.76 ± 18.0 0.32 ±0.6 7.10 ± 10.6 0.23 ± 0.7 0.22 ±0.8 0.23 ± 0.6 0.22 ± 0.5
RubberWhale 5.27 ± 8.6 0.16 ±0.3 6.13 ± 17.2 0.16 ± 0.3 0.15 ±0.3 0.17 ± 0.3 0.17 ± 0.3
Urban2 3.65 ± 10.7 0.37 ±2.7 2.82 ± 4.1 0.25 ± 1.1 0.32 ±1.3 0.31 ± 0.1 0.40 ± 1.4
Urban3 3.87 ± 5.1 0.27 ±0.6 3.53 ± 4.4 0.31 ± 1.0 0.35 ±0.9 0.25 ± 0.5 0.25 ± 0.5
Venus 2.66 ± 2.9 0.24 ±0.6 2.77 ± 6.7 0.23 ± 0.5 0.23 ±0.5 0.27 ± 0.6 0.27 ± 0.6

Endpoint Errors ± SD
Dimetrodon 10.97 ± 8.7 0.71 ±0.3 10.34 ± 7.5 0.97 ± 1.1 0.80 ±0.4 0.87 ± 0.5 0.87 ± 0.5
Grove2 14.38 ± 11.5 1.5 ±5.0 15.50 ± 11.0 1.05 ± 1.9 0.77 ±0.4 0.83 ± 0.4 0.83 ± 0.4
Grove3 13.83 ± 9.7 4.48 ±10.5 24.33 ± 20.0 1.37 ± 3.3 0.87 ±0.4 0.95 ± 0.5 0.95 ± 0.5
Hydrangea 25.32 ± 17.1 1.59 ±2.8 24.21 ± 17.3 0.88 ± 0.6 0.91 ±1.1 0.87 ± 0.5 0.85 ± 0.5
RubberWhale 22.59 ± 15.8 0.73 ±1.1 17.33 ± 14.8 0.73 ± 0.4 0.8 ±0.4 0.88 ± 0.5 0.86 ± 0.5
Urban2 18.96 ± 17.5 1.33 ±3.8 13.36 ± 10.3 1.21 ± 3.7 1.51 ±5.4 1.46 ± 4.1 1.83 ± 5.9
Urban3 19.83 ± 17.1 1.55 ±3.7 15.44 ± 11.5 1.47 ± 4.1 9.41 ±24.6 1.03 ± 0.7 1.06 ± 0.7
Venus 9.86 ± 8.7 1.16 ±3.8 11.86 ± 11.4 0.74 ± 0.5 0.74 ±0.3 0.87 ± 0.5 0.87 ± 0.5

Fig. 8. Dense flow with scene motion. Image pairs presenting different scale changes in different parts of the
scene, due to camera and scene motion. Correspondences from Source to Target images estimated using [9],
comparing DSIFT [8], SID [19], Segmented SID and segmented SIFT, both from [37] and our SLS, shown here
with the automatically determined crop region in white (Sec. 3.5).

performed on this process and it is applied without
modification to all our images.

4 EXPERIMENTS

Our evaluation code was written in MATLAB, using
the SIFT code of [7], the SID code of [19] and the
segmented SIFT and SID code from [37]. Flow was
estimated using the original SIFT flow code [8], [9],
with either its original DSIFT, or alternatively using
SID, segmented SIFT and SID, and our own SLS
descriptor. Our SLS results were produced using 8D,
linear subspaces obtained by standard PCA. We used
20 scales at each pixel, linearly distributed in the range
[0.5, 12]. Note that the size of the SLS representation
and the matching time depends only on the dimen-
sion of the underlying SIFT descriptor (Sec. 3.3).

To promote reproducibility, we publicly released
our code, including the new dimensionality reduced
SLS descriptors, PCA-SLS, described in Sec. 3.4. Our
implementation is available from [1].

4.1 Dense correspondence estimation
Quantitative results on Middlebury data [36]. We
compare our SLS and SLS-PCA with DSIFT, SID and
the segmented versions of SID and SIFT, Seg. SID
and Seg. SIFT, on the Middlebury optical flow set.
Since the image pairs in the Middlebury do not ex-
hibit significant scale changes, we modify the data by
rescaling the Source and Target images by factors of
0.7 and 0.2, resp. The quality of an estimated match
was measured using both angular and endpoint errors
(± SD) [36]. Table 1 shows that both multiscale ap-
proaches outperform single-scale DSIFT significantly.
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Fig. 9. Dense flow between different scenes in different scales. Correspondences from Source to Target
images estimated using [9], comparing DSIFT [8], SID [19], Segmented SID and segmented SIFT, both from [37]
and our SLS, shown here with the automatically determined crop region in white (Sec. 3.5).

Furthermore, our SLS descriptors lead to lower errors
when compared to the descriptors of [19] and [37].

SLS-PCA uses basis vectors computed from
descriptors extracted from both images in order
to reduce the dimensionality of the representation.
In many practical cases, one image, available for
preprocessing, is repeatedly compared against
others. Table 1 also additionally provides results
obtained by SLS-PCA-1, which denotes the use of
PCA computed using SIFT descriptors from only
one image, and the resulting projection to lower
dimension then applied to the descriptors of both
images. Evidently, pre-computing the dimensionality
reduction projections using a single image, results in
only a minor compromise in accuracy.

Qualitative results. We present a visual comparison
of the quality of the estimated flows, using each of the
three alternatives: DSIFT, SID and our SLS descriptor.
Our results present a Source image warped onto the
Target image according to the estimated flows. SLS
results in Fig. 8 and 9 are further cropped to show
areas of high confidence matches (see below).

We ran tests on image pairs with independent scene
motion (Fig. 8) and images of different scenes with
similar appearances (Fig. 9). All pairs include scale
differences, often extreme. We know of no previous
method which successfully presents dense correspon-
dences on such challenging image pairs. Our results
show that the SLS enables accurate dense correspon-
dences even under extreme changes in scale.

In Fig. 8 DSIFT typically manages to lock onto a sin-
gle scale quite well, while missing other scale changes
in the scene. The SLS descriptor better captures the

Ground
Image DSIFT SID SLS truth

Fig. 10. Make3d depth transfer. Estimated depth
maps of an image from the Make3d data [38][39]. The
SLS result is the most similar to the ground truth.

scale-varying behavior at each pixel and so manages
to better match pixels at different scales with only
local misalignments.

Fig. 1 and 9 present matches estimated between im-
ages of different scenes. A good result would have the
appearance of the Source (left) images, in the scales
and poses of the Target (right) images. As can be seen,
the DSIFT and SID descriptors either leave the source
in its original scale, unchanged, or else completely fail
to produce coherent matches. Although some artifacts
are visible in the SLS results (right column), the results
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TABLE 2
Depth transfer on Make3d data - Relative Error, Log-10 Error and RMSE. Testing data was rescaled to 0.1,

while the training data was rescaled to 0.1, 0.2, 0.3 and 0.4. SLS and Seg. SID descriptors obtain the lowest
errors when scale difference is introduced. Using dimension reduction, SLS-PCA can be run on larger images

as well. Results are missing for representations and image sizes which were too big to run on our system.
Please see text for more details.

Training data rescale factor
0.1 0.2 0.3 0.4

Method Rel. log10 RMSE Rel. log10 RMSE Rel. log10 RMSE Rel. log10 RMSE
DSIFT [8] 0.419 0.165 15.127 0.479 0.287 21.467 0.643 0.243 19.819 0.780 0.250 19.996
SID [19] 0.420 0.174 15.340 0.486 0.261 20.564 N/A N/A N/A N/A N/A N/A
Seg.SID [37] 0.391 0.154 14.785 N/A N/A N/A N/A N/A N/A N/A N/A N/A
SLS 0.400 0.164 15.396 0.449 0.251 20.499 N/A N/A N/A N/A N/A N/A
SLS-PCA 0.411 0.159 14.692 0.471 0.268 20.919 0.618 0.239 19.791 0.726 0.242 19.699

present coherent scenes in the target image scales.

4.2 Correspondences on the “Oxford” set
We compare our SLS descriptor against DSIFT and
SID also on images from the Oxford, “Mikolajczyk”
data set [40]. We use the Bikes and Trees sets which
present slight rotation and translation, but mostly
scale (blur) changes and the Leuven set, whose images
mostly vary in illumination. Since our SLS descriptors
are designed to work well on the vast majority of
the image pixels – those outside the set of detected
interest points – rather than comparing matching at
interest points, we compare matching accuracy at 100
randomly selected pixels in the image.

Specifically, we compare the percent of times that
a descriptor extracted at a random pixel in the first
image of each series, is matched to its ground truth
pixel in subsequent images of the series. Matching
is performed using nearest neighbor computed using
L2 distances between descriptors. Ground truth uses
the known homographies between the images of each
sequence to find ground truth correspondences. The
descriptors tested are DSIFT [7], SID [37] and our SLS.

Fig. 11 presents these results. Evidently, the two
representations designed to capture scales outperform
DSIFT. Both SID and SLS perform abut the same in
the presence of gradual lighting changes, SLS outper-
forming SID in matching pixels across scale changes.

4.3 Depth estimation from a single image
We ran a test on the Make3d data [38][39], using
evaluation code by [41]. The dataset includes 400
training images and 134 testing images with known
depth data. The evaluation code finds k = 7 similar
images from the train set, computes descriptors, and
calculates the SIFT flow between the query image and
each of these k images using [8], [9]. The flows are
applied to the k ground truth depths which are then
merged together for the final depth.

The testing data was resized to 0.1 (10%) of the
original image size, and the training data was resized

to 0.1, 0.2, 0.3 and 0.4. For this test, we selected a
random subset of 30 testing images and used SIFT [7],
SID [19], the Seg. SID of [37] and our own SLS
descriptors. We also provide results for dimension
reduced SID and SLS descriptors (see Sec 4.1) The
larger sizes (0.3 and 0.4) were only executed with
SIFT and SLS-PCA due to memory limitations. Results
were omitted for the Seg. SIFT descriptor [37] as it
performed substantially worst than the others.

Table 2 reports actual reconstruction accuracy. Ap-
parently, SLS descriptors are comparable to the best
performing alternative method, yet can be applied to
a greater range of scales by applying dimensionality
reduction with PCA. We provide a number of example
reconstructions along with their respective ground
truths in Fig. 10.

4.4 SIFT points, sets, and subspaces
We next assess the quality of traditional, single scale
SIFT descriptors against the various multiscale rep-
resentations discussed here. This is performed twice:
First, we compare the various representations at de-
tected interest points where stable scales can be esti-
mated allowing for scale invariant SIFT descriptors to
be extracted. We then repeat our experiment, but this
time extracting our representations on a dense grid,
throughout the image and without scale selection
available at each pixel.

To this end, we use images from the Berkeley image
set [42]. Each image is matched against itself, scaled
by a random scale factor in the range of [1.5 . . . 4].
Our results are reported in Fig. 12. It provides the
performance of the various representations by their
true and false positive rates:

True Positives Rate =
#correct matches

#possible correct matches

False Positives Rate =
#incorrect matches

#possible incorrect matches

Here, a false match is any time a pixel is not matched
to its known, ground truth correspondence, computed
using the scale factor used for each pair.
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Fig. 11. Oxford data set results [40]. Comparing descriptor matching accuracy of 100 randomly selected image
points represented by DSIFT [7], SID [37] and our own SLS. Accuracy denotes the percent of the times that
descriptors in image ]1 of each set are matched with their true corresponding pixel in each of the subsequent
images, using L2 distances between descriptors. Please see text for more details.
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(a) Interest points
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(b) Dense sampling

Fig. 12. Interest points vs. dense sampling on
Berkeley data set. We examine different descrip-
tors on: (a) Interest points and (b) Dense sampling.
Clearly, point-to-point matching of SIFT descriptors
performs better at detected interest points. This advan-
tage should be weighed against the small number of
such points in the image. In all other pixels, set-to-set
representations outperform single scale, point-to-point
representations.

The following methods were compared: SIFT de-
scriptors from one image were matched to those of the

other based on the closest L2 neighbor (point2point).
SIFT sets were matched using the min-dist of [29]
(set2set min dist) and the minimum over the aver-
age distances computed for all discrete scale shifts
between the two images (set2set mean scale shift).
The distances between subspace representations were
computed using the Projection Frobenius Norm (Sub-
space Frobenius). Finally, we measure the L1 and L2
distances between our SLS descriptors (SLS L1 and
SLS L2, resp.).

Fig. 12 (a) shows that single scale SIFT represen-
tations, when extracted at stable scales are very dis-
criminative and they can be matched reliably, even
compared to the multi scale representations. This,
of course, is not surprising, and is the reason why
SIFT descriptors have become so popular in computer
vision systems. This performance, however, should
be weighed against the ability to extract effective
SIFTs throughout the image: in 500×500 pixel images,
roughly 2,000 SIFT descriptors can be extracted at
stable scales in order to achieve such accuracy.

Fig. 12 (b) compares the same methods on a dense
grid. Here, single scale SIFT descriptors were ex-
tracted using the scale corresponding to the maximum
DoG value at each pixel. Clearly, the matching accu-
racy of single scale SIFTs drops considerably to well
below those of the multi scale representations. This
implies that in order to avoid ignoring the majority
of the image in favor of a small number of interest
points, multiscale representations should be used,
rather than single scale SIFTs.

4.5 Parameter evaluation
We next evaluate the influence of various param-
eters on feature matching accuracy and run-time.
We again use images from the Berkeley set [42],
rescaled by a randomly determined scale factor uni-
formly distributed in the range [1.5 . . . 4]. We report
the mean±SD accuracy and run-time of matching
pixels on regular grids, between each such image pair.
Accuracy is measured as the ratio of the times a pixel’s
nearest neighbor is its ground truth matching pixel, to
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the total number of pixels. Runtime measures the time
required for matching.

Fig. 13 presents the following results. (1) Point-
to-point with scale selection: A single scale is se-
lected for each pixel and is used to extract a DSIFT
descriptor. Scale selection follows [3], by choosing
the extremum DoG scale, but ignoring any ad-
ditional filtering. (2) Set-to-set, variable number
of scales: Using the min-dist measure (Eq. 1) to
compute pixel similarities. The number of scales
sampled was varied, sampling one to ten DSIFT
descriptors from scales distributed linearly in the
range of [0.5, 12] using the MATLAB expression
linspace(0.5,12,num_sigma). (3) Subspace-to-
subspace, variable number of scales: Using the same
sets as in (2) to fit a linear subspace for each pixel
(using PCA). Subspace dimensions equal the number
of scales sampled. The distance between two sub-
spaces was computed using Eq. (4). (4) Subspace-
to-subspace, variable dimension: Same as (3), but
here 10 DSIFT descriptors were used to fit subspaces
varying in dimension from 1 to 10.

From Fig. 13 it can be seen that when few scales
are sampled, a single, carefully selected scale pro-
vides better performance than an arbitrarily selected
scale. This advantage disappears at 3 scales; accu-
racy increasing rapidly with more scales sampled.
By 5 scales, the matching quality is near perfect for
the multiscale representations. The accuracy of the
subspace-to-subspace method testifies that these SIFT
sets indeed lie close to a low dimensional linear sub-
space. In fact, it seems that a 4D linear subspace man-
ages to accurately capture scale varying SIFT values.
We note that when a single scale is considered, the
set-to-set similarity is equivalent to comparing DSIFT
descriptors at an arbitrary scale and the subspace-
to-subspace distance reduces to a sine similarity of
these two DSIFT descriptors. Both are far worse than
choosing the single scale at each pixel.

Run-times for the set-based methods are higher
than comparing single points. We made no attempt to
optimize our code, using built-in MATLAB functions
for all our processing, and so better performance may
likely be obtained. The complexity of directly compar-
ing two sets (Sec. 3.1) or two subspaces (Sec. 3.2), how-
ever, limits the effectiveness of such optimizations. Yet
although the set based methods are more computa-
tionally expensive, their significantly higher accuracy
makes them an alternative worth considering.

Fig. 14 visualizes the results of Fig. 13. In it, we use
the target images scaled ×2 as sources, and estimate
flow from source to target. Flow vectors, displayed on
the source images, were computed using the follow-
ing three representations: Point-to-point correspon-
dences of SIFT descriptors computed in scales selected
using DoG ((a) in Fig. 13); the subspace-to-subspace
distance (Eq. (7) in the paper) between 4D subspaces
produced by sampling 10 scales linearly distributed in
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(a) Point-to-point 0.26±0.06 0.02±0.00
(b) Sub.-to-sub. 0.94±0.05 14.00±0.09

7 scales, 7D
(c) Sub.-to-sub., 0.94±0.05 10.05±0.06

10 scales, 4D
(d) Set-to-set, 5 scales 0.93±0.05 6.64±0.11

Fig. 13. Accuracy vs. runtime. See text for details.

TABLE 3
Run-time comparison. Parameters and run-times (in
seconds) for the images of Fig. 13, here, rescaled to

133× 200 (± SD omitted for clarity). We compare
some of the parameter configurations tested in this
paper, as well as the time required for using SIFT

flow [8]. Subspace representations in row 5–6
represented as SLS descriptors. Rows 5–7 use the

same descriptor dimensions.

Method ]Scales ] Dims. Desc. extraction Flow
1 DSIFT [7] - - 0.68 6.37
2 SID [19] - - 131.82 77.00
3 Seg. SID [37] - - 149.66 74.89
4 Seg. SIFT [37] - - 0.65 6.17
5 Fig. 13 (b) 7 7 538.22 178.52
6 Fig. 13 (c) 10 4 644.1 178.52
7 SLS 20 8 1291.52 178.52
8 SLS-PCA 25 8 1742.74 13.78

the range of σ = [0.5, 12] ((c) in Fig. 13); finally, min-
dist (Eq. (4) in the paper) with set representations,
using 5 scales samples linearly in the same range as
used to produce the subspaces ((d) in Fig. 13). Both
multiscale representations provide better correspon-
dences than single descriptors. This is particularly
true in low contrast areas where interest points are
not typically detected.

Finally, Table 3 provides comparisons of the com-
putational requirements made by the representations
used in this paper. In it, run-times in seconds are
reported for the process of extracting each of the
various dense representations considered here, as well
as the time required for SIFT flow to estimate corre-
spondences using each representation. All numbers
are reported on the same system with 133 × 200
pixel images. As expected, our SLS descriptor re-
quires the most time to compute. Its extraction time,
however, is balanced with its more accurate results
reported throughout this paper. Further evident is
the flow estimation run-time advantage of the SLS-
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Target Point-to-point Subspace-to-Subspace Set-to-set

Fig. 14. Visualization of the quantitative tests on the Berkeley set [42]. Target images are shown in left
column. We use the target images, here scaled ×2, as sources, and estimate flow from source to target. Please
see text for more details.

PCA representation compared to the other multiscale
representations.

5 CONCLUSION
The scale selection methods that have developed since
the early 1990s were largely motivated by a need to
reduce computational cost as well as the assumption
that few scales can be reliably matched [12]. In this
paper, we show that images contain valuable infor-
mation in multiple scales. Thus, scale selection may be
detrimental to the quality of the results when dense
correspondences are required. The alternative, extract-
ing SIFT descriptors at multiple scales, significantly
improves results but at a computational price. We
examine how such multiple scales may be compared,
representing them as sets or low-dimensional, linear
subspaces. In both cases, multiple SIFTs outperform
single descriptors in pixel matching tests by wide
margins. Finally, we present a point representation for
these subspaces, the SLS descriptor, which we use as a
stand-in for DSIFT in the SIFT flow method, improv-
ing correspondences on a wide range of challenging
viewing conditions.

We focus on the SIFT descriptor because of its
popularity and its convenient property of changing
gradually through scales. It remains to be seen how
well the same approach carries over to other suc-
cessful descriptors, including DAISY [6], SURF [43],
LATCH [44], and others. Extensions to affine invari-
ance also require study. Lastly, we intend to examine
the impact of this approach in other Computer Vision
problems such as those covered by [45].

ACKNOWLEDGMENTS
Lihi Zelnik-Manor was supported in part by the
Ollendorf foundation, the Israel Ministry of Science,
and by the Israel Science Foundation under Grant
1179/11.

REFERENCES

[1] T. Hassner, V. Mayzels, and L. Zelnik-Manor, “On sifts
and their scales,” in Proc. Conf. Comput. Vision Pattern
Recognition, June. 2012. [Online]. Available: http://www.
openu.ac.il/home/hassner/projects/siftscales

[2] K. Mikolajczyk and C. Schmid, “Scale & affine invariant
interest point detectors,” Int. J. Comput. Vision, vol. 60, no. 1,
pp. 63–86, 2004.

[3] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110,
2004.

[4] J. Morel and G. Yu, “Is sift scale invariant?” Inverse Problems
and Imaging (IPI), vol. 5, no. 1, pp. 115–136, 2011.

[5] H. Hirschmüller and D. Scharstein, “Evaluation of stereo
matching costs on images with radiometric differences,” Trans.
Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1582–1599, 2009.

[6] E. Tola, V. Lepetit, and P. Fua, “Daisy: An efficient dense de-
scriptor applied to wide-baseline stereo,” Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 5, pp. 815–830, 2010.

[7] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable
library of computer vision algorithms,” in Proc. int. conf. on
Multimedia, 2010, pp. 1469–1472, available: www.vlfeat.org/.

[8] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense correspon-
dence across scenes and its applications,” Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 5, pp. 978–994, 2011.

[9] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. Freeman, “Sift flow:
dense correspondence across different scenes,” in European
Conf. Comput. Vision, 2008, pp. 28–42, people.csail.mit.edu/
celiu/ECCV2008/.

[10] R. Basri, T. Hassner, and L. Zelnik-Manor, “A general frame-
work for approximate nearest subspace search,” in Proc. Int.
Conf. Comput. Vision Workshop. IEEE, 2009, pp. 109–116.

[11] ——, “Approximate nearest subspace search,” Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 2, pp. 266–278, 2010.

[12] T. Lindeberg, “Feature detection with automatic scale selec-
tion,” Int. J. Comput. Vision, vol. 30, no. 2, pp. 79–116, 1998.

[13] ——, “Principles for automatic scale selection,” Handbook on
Computer Vision and Applications, vol. 2, pp. 239–274, 1999.

[14] K. Mikolajczyk, “Detection of local features invariant to affine
transformations,” Ph.D. dissertation, Institut National Poly-
technique de Grenoble, France, 2002.

[15] T. Brox, C. Bregler, and J. Malik, “Large displacement optical
flow,” in Proc. Conf. Comput. Vision Pattern Recognition, 2009,
pp. 41–48.

[16] C. Strecha, T. Tuytelaars, and L. Gool, “Dense matching of
multiple wide-baseline views,” in Proc. Int. Conf. Comput.
Vision, 2003.

[17] J. Yao and W. Cham, “3D modeling and rendering from
multiple wide-baseline images by match propagation,” Signal



SIFTING THROUGH SCALES, IEEE TPAMI, JUNE 2014 14

processing. Image communication, vol. 21, no. 6, pp. 506–518,
2006.

[18] I. Simon and S. Seitz, “A probabilistic model for object recog-
nition, segmentation, and non-rigid correspondence,” in Proc.
Conf. Comput. Vision Pattern Recognition, 2007, pp. 1–7.

[19] I. Kokkinos and A. Yuille, “Scale invariance without scale
selection,” in Proc. Conf. Comput. Vision Pattern Recognition,
2008, pp. 1–8, available: vision.mas.ecp.fr/Personnel/iasonas/
code/distribution.zip.

[20] M. Varma and R. Garg, “Locally invariant fractal features for
statistical texture classification,” in Proc. Int. Conf. Comput.
Vision, 2007, pp. 1–8.

[21] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for
bag-of-features image classification,” in European Conf. Comput.
Vision, 2006, pp. 490–503.

[22] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/kanade meets
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