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ABSTRACT
We present a novel method for classifying emotions from
static facial images. Our approach leverages on the recent
success of Convolutional Neural Networks (CNN) on face
recognition problems. Unlike the settings often assumed
there, far less labeled data is typically available for train-
ing emotion classification systems. Our method is therefore
designed with the goal of simplifying the problem domain by
removing confounding factors from the input images, with
an emphasis on image illumination variations. This, in an ef-
fort to reduce the amount of data required to effectively train
deep CNN models. To this end, we propose novel transfor-
mations of image intensities to 3D spaces, designed to be
invariant to monotonic photometric transformations. These
are applied to CASIA Webface images which are then used
to train an ensemble of multiple architecture CNNs on mul-
tiple representations. Each model is then fine-tuned with
limited emotion labeled training data to obtain final clas-
sification models. Our method was tested on the Emotion
Recognition in the Wild Challenge (EmotiW 2015), Static
Facial Expression Recognition sub-challenge (SFEW) and
shown to provide a substantial, 15.36% improvement over
baseline results (40% gain in performance).

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Computer Vi-
sion

Keywords
Emotion Recognition; Deep Learning; Local Binary Pat-
terns; EmotiW 2015 Challenge

1. INTRODUCTION
Facial expressions play a vital role in social communica-

tions between humans. It is therefore unsurprising that au-
tomatic facial emotion recognition has become a subject of
much recent research. Additional motivation comes from
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Figure 1: Image intensities (left) are converted to
Local Binary Pattern (LBP) codes (middle), shown
here as grayscale values. We propose to map these
values to a 3D metric space (right) in order to use
them as input for Convolutional Neural Network
(CNN) models. 3D codes in the right image are
visualized as RGB colors.

potential applications of effective systems for emotion recog-
nition, with some examples including affect-sensitive Man-
Machine-Interaction systems and auto tutors [12, 11, 29].
Yet despite this work, present automatic capabilities are still
far from meeting the needs of commercial systems. This gap
in performance is especially noteworthy when considering
the substantial leaps in performance recently reported for
the related task of face recognition (e.g., [33, 38, 37]).

Possible reasons for this performance gap between expres-
sion and face recognition systems include the significant dif-
ference in the data available for developing, training and
testing automatic systems: Much of the recent achievements
in machine face recognition have been due to deep Con-
volutional Neural Networks (CNN) which require massive
amounts of labeled training data [33], and these are not yet
available for emotion recognition. Exacerbating this is the
particular nature of the emotion recognition problem, which
involves large intra-class and small inter-class appearance
variations. These are added to the many confounding fac-
tors of face image analysis under unconstrained in-the-wild
conditions, such as those considered here.

We propose a method designed to jointly address two of
the key challenges of automatic emotion recognition from
still images. The first is the small amount of labeled data
available for training deep CNN models and the second is ap-
pearance variation, specifically, illumination variability. We



define a novel mapping from intensities to illumination in-
variant, 3D spaces, based on the well-known Local Binary
Patterns (LBP) feature transform [25, 27, 26]. Unlike LBP
codes, our mapping produces values in a metric space which
can be processed by CNN models (Fig. 1). Transformed im-
ages from the CASIA webface collection are used to train
an ensemble of CNN models using different network archi-
tectures and applied to different representations. These are
then fine-tuned on a substantially smaller set of emotion-
labeled face images. We test our method on the Emotion
Recognition in the Wild Challenge (EmotiW 2015), Static
Facial Expression Recognition sub-challenge (SFEW) [10].
Our results demonstrate a remarkable 15.36% improvement
over baseline scores (40% gain in performance).

2. RELATED WORK
Automatic facial emotion recognition has received increas-

ing interest in the last two decades. The nature of the prob-
lems considered by previous work is reflected in the bench-
marks used to measure and report performances. For ex-
ample, early relevant data-sets such as those of [23, 18, 30]
contained only constrained images taken in laboratory con-
trolled conditions. More recently, unconstrained, in-the-wild
photos have been considered with the release of the EmotiW
challenge [9].

In [36] a Boosted-LBP descriptor was proposed, designed
by learning the most discriminative LBP features using Ad-
aBoost. Images represented using these features were then
classified for different emotions using Support Vector Ma-
chines (SVM) [8]. In [5] a novel classification tree, based on
sparse coding [24] was presented. The authors of [22] pro-
posed a deep architecture which models face expressions by
utilizing a set of local Action Unit features. Finally, the au-
thors of [16] suggest using high-dimensional image features
produced by dense census transformed vectors [44] based on
locations defined by fiducial landmark detections.

Similar to some of the methods listed above, our own
also uses deep CNNs. Unlike them, we propose applying
these networks to pre-processed images, transformed in a
manner designed to reduce variability due to illumination
changes. Furthermore, we use network ensembles, rather
than just single networks, where each one is trained us-
ing different image representations (different pre-processing
applied to the input images) as well as different network
architectures. Rigorous testing shows that these different
networks provide complementary information which, when
combined, provides a substantial boost to recognition per-
formance.

Deep CNNs. Though CNNs have been introduced more
than three decades ago [20], it is only recently that they be-
come a predominant method in image classification tasks.
With the emergence of very large classification data-sets,
the increase in computation power and algorithmic improve-
ments in training those models, the huge number of model
parameters is no longer a limiting factor in applying CNNs
in practical settings. Thus, in recent years, deep CNNs have
been applied in various image classification problems, in-
cluding, e.g., object recognition [19], scene recognition [45],
face verification [33, 38, 37], age and gender classification [21],
and more.

Local Binary Patterns. Local Binary Patterns (LBP)
were originally developed as a means of describing texture
images [25, 27, 26]. They have since been successfully ap-
plied to a wide range of other image recognition tasks, most
notably face recognition [1, 41], age estimation [6] and gen-
der classification [35]. To our knowledge, we are the first to
propose the use of LBP features as input to CNN models.
We show that doing so boosts performance well beyond that
obtained with CNN models trained on RGB alone.

3. METHOD
We next describe the various components of our approach.

We assume that images have been preprocessed by convert-
ing them to gray scale and cropping them to the region of
the face. We further assume that faces are in-plane aligned.
Though frontalization [14] may presumably be used here to
reduce appearance variability further, we have not tested
this approach in our pipeline. In practice, we use the im-
ages provided by the EmotiW 2015 challenge [10], aligned
using the Zhu and Ramanan facial feature detector [46].

Each face image is processed as follows:

1. We begin by applying LBP encoding to the pixels of
each image using different values for the LBP radius
parameter (Section 3.1). Each encoding converts im-
age intensity values to one of 256 LBP code values.

2. LBP codes are mapped to a 3D space using the map-
ping obtained by applying Multi Dimensional Scaling
(MDS) using code-to-code dissimilarity scores based
on an approximation to the Earth Mover’s Distance
(Section 3.2).

3. The original RGB image, along with the mapped code
images, are then used to train multiple, separate CNN
models to predict one of seven emotion classes. A final
classification is obtained by a weighted average over
the outputs of the network ensemble taking the pre-
dicted emotion class to be the one with the maximum
average probability (Section 3.3).

Each of these steps is described in detail next.

3.1 LBP code extraction
LBP codes have been widely used for nearly two decades;

we refer to previous work for detailed description of how
these are produced and of their various properties [25, 27,
26]. Here, we provide a cursory overview related to their use
in our work.

LBP codes capture local image micro-textures. They are
produced by applying thresholds on the intensity values of
the pixels in small neighborhoods using the intensity of each
neighborhood’s central pixel as the threshold. The resulting
pattern of 0s (lower than the threshold) and 1s (higher than
the threshold) is then treated as the pixel’s representation
or code. When the neighborhood contains eight other pixels,
this binary string is treated as an eight-bit number between 0
and 255. These codes are typically pooled over image regions
using a histogram of code frequencies. Histograms are then
used to represent the image region (see, e.g., [42]). In our
work we use these codes in an entirely different manner.

Before continuing, we stop to consider specific advantage
of LBP codes and the reason for their use here. By bas-
ing each pixel’s encoding on a threshold value applied to its



neighbors, the resulting representation is inherently invari-
ant to monotonic photometric transformations; that is, any
photometric transformation which does not change the order
of image intensities. This includes, but is not limited to, ad-
ditive and multiplicative intensity transformations, gamma
correction and contrast manipulations.

Used with Support Vector Machines (SVM) classifiers,
LBP code histograms have been key to the success of face
recognition systems [41, 42, 14]. In contrast to these earlier
methods, we wish to process LBP codes directly, without
pooling, using CNN models. LBP codes, however, are, by
their nature, not well suited as CNN inputs.

To understand why, note that the basic operation per-
formed by a CNN on its input values is a convolution, which
is equivalent to a weighted average of these values. When
these values are codes from an unordered set, the outcome
of a convolution is meaningless. To illustrate this, con-
sider the following three LBP codes: a = (0, 0, 0, 0, 0, 0, 0, 0),
b = (1, 0, 0, 0, 0, 0, 0, 0) and c = (0, 0, 0, 0, 0, 0, 0, 1). Both b
and c differ from a by just one bit, meaning the distance in
the binary LBP space between a and b is the same as the
distance between a and c. This can be taken to imply that
they represent very similar local arrangements of pixel val-
ues. Simply treating these codes as eight-bit integer values,
however, we get that a = 0, b = 128 and c = 1. Hence, the
euclidean distance between b and a is much larger than the
euclidean distance between c and a. Our mapping, described
next, addresses this very issue.

3.2 Mapping LBP codes
The key to our LBP code mapping is the use of Multi Di-

mensional Scaling (MDS) [2, 34] to transform the unordered
LBP code values to points in a metric space. In this way,
transformed points may be averaged together using convolu-
tion operations yet their distances approximate the original
code-to-code distances.

To this end, we first define a distance (dissimilarity) δi,j
between LBP codes, Ci, Cj ∈ 28

2. This distance should re-
flect the underlying similarity of the image intensity patterns
used to produce each LBP code string. A full dissimilarity
matrix, representing the distances between all possible code
values, can then be defined as:

∆ :=


δ11 δ12 δ13 . . . δ1n
δ21 δ22 δ23 . . . δ2n
...

...
...

. . .
...

δd1 δd2 δd3 . . . δdn

 ,
For a given dissimilarity matrix ∆, MDS seeks a mapping
of the codes to a low dimensional metric space, such that:

δi,j ≈ ‖Vi − Vj‖ = ‖MDS(Ci)−MDS(Cj)‖. (1)

Here, LBP codes Ci, and Cj are mapped to Vi, Vj resp.

Defining a binary LBP pattern dissimilarity. Ostensi-
bly, the difference between two LBP codes can be estimated
by the number of different bit values they have between
them; that is by their Hamming distance. This, however,
may not accurately reflect the differences in the intensity
patterns which produced these codes: The locations of dif-
fering bit values, not just their number, are also important
when considering code similarity.

To illustrate this, again consider the following three binary
LBP vectors: a = (1, 0, 0, 0, 0, 0, 0, 0), b = (0, 1, 0, 0, 0, 0, 0, 0)
and c = (0, 0, 0, 0, 1, 0, 0, 0) (see also, Eq. 2). The number of
different bits (and hence the Hamming distance) for the pair
a and b is the same number as for a and c: two. The original
texture patterns which produced these patterns, however,
are very different: the pair a and b are related by a slight,
one-pixel rotation of the pattern around the central pixel,
whereas code c represents a mirror of the intensity pattern
represented by a and the two are hence less similar.

a =

 1 0 0
0 × 0
0 0 0

 b =

 0 1 0
0 × 0
0 0 0

 c =

 0 0 0
0 × 0
0 0 1


(2)

In order to account for differences in spatial locations
of pixel codes rather than Humming distance we use their
Earth Mover’s Distance (EMD) [31].

Generally speaking, EMD is defined to reflect the smallest
effort required to convert one distribution into anther. It is
used here as a measure of the difference between two LBP
codes. Formally, the EMD between two codes, P and Q is
defined as follows:

EMD(P,Q) =

min
{fkl}

∑
kl

fkldkl∑
kl

fkl
, s.t.,

0 ≤ fkl,
∑
l

fkl ≤ Pk,
∑
k

fkl ≤ Ql, and (3)

∑
kl

fkl = min

(∑
k

Pk,
∑
l

Ql

)
.

Intuitively, this reflects the effort required to shift values
from one code to another, where fkl ∈ {0, 1} is the flow of
the value from bit k in P (Pk) to bit l in Q (Ql), {fkl} is
the entire flow from P to Q and

dkl = ||k − l||2, (4)

is taken to be the standard definition of a ground distance
between two bit positions , and represents the effort required
to move the value between bit positions.

EMD approximation. In practice, rather than compute
the true EMD between the two code strings (Eq. 3), we ap-
proximate it by making the (here, often untrue) assumption
that both codes have the same number of bits set to 1. This
allows the use of the closed form solution to EMD [40, 7]:

EMD(P,Q) = ||CDF (P )− CDF (Q)||1, (5)

with CDF being the cumulative distribution function (cu-
mulative sum) of bit values. This not only allows faster
computation than general EMD, but, more importantly, it
better reflects code distances whenever the numbers of bits
set to 1 is different. To illustrate this, the true EMD dis-
tance between the codes a = (0, 0, 0, 0, 0, 0, 0, 0) and b =
(1, 1, 1, 1, 1, 1, 1, 1) would be 0, as there are no bit values of
1 to move from any position in a to b. This would wrongly
imply that they encode similar local appearance. The value
computed using Eq. 5, however, would be 36, correctly re-
flecting the difference in the local appearance represented
by the two codes. The entire code-to-code distance matrix



Figure 2: Visualization of code-to-code distance ma-
trix ∆. Left is the 256×256 matrix ∆ of code distances
(color coded), computed using the EMD approxima-
tion of Eq. 5. On the right is the distances color bar.
Evidently, this distance penalizes two codes for dif-
ferent positions and different numbers of of bits.

∆ produced using this approximation is visualized in Fig. 2.
Clearly, the distances between codes reflect both the differ-
ence in positions and numbers of on bits.

Distances for cyclic codes. LBP codes are cyclic by de-
sign: the least significant bit represents a pixel adjacent to
the pixel represented by the most significant bit (see, e.g.,
Eq. 2). When using the standard EMD of Eq. 3 this can be
expressed by modifying the ground distance (Eq. 4). In or-
der to employ the approximation of Eq. 5, however, we chose
the following method of accounting for the cyclic nature of
LBP codes.

Given two LBP codes P,Q ∈ 28
2, we append a single 0-

valued bit as the new least significant bit of each code (in-
creasing code sizes to nine bits) and denote the modified
codes as P ′ and Q′, respectively. The modified, cyclic dis-
tance, δ′(P,Q) is defined by

δ′(P,Q) = min(δ(P ′, Q′), δ(rev(P ′), Q′), δ(P ′, rev(Q′)),
(6)

where δ is the the distance computed by Eq. 5 and rev()
rearranges code values in reverse order. The distances com-
puted following this modification are illustrated in Fig. 3.
A visual comparison of the distances in Fig. 3 to those in
Fig. 2 demonstrates that indeed smaller distances (more sim-
ilar codes) are assigned whenever bit values can be moved
from one end of the code to another.

3.3 Ensemble of Deep CNN
Previous work has shown the benefits of employing multi-

ple image representations and multiple similarity measures
in face recognition tasks [41, 42]. Here, to our knowledge
for the first time, we propose doing the same using multiple
CNN architectures, multiple representations and multiple
similarity measures.

Figure 3: Visualization of code-to-code distance ma-
trix ∆. Left is the 256 × 256 matrix ∆ of code dis-
tances (color coded), computed using Eq. 6 to ac-
count for the cyclic nature of LBP codes. On the
right is the distances color bar. Compared with the
distances visualized in Fig. 2, distances are smaller
(codes are more similar) whenever codes have bits
set to 1 across code rotations.

Specifically, we employ four different, existing network ar-
chitectures: the VGG S, VGG M-2048 and VGG M-4096
networks presented in [4] and the BVLC GoogleNet network
presented in [39]. Please see relevant papers for the details
of each network design and architecture. In all cases, CNNs
were trained to predict 7D vectors of emotion class probabil-
ities using the labeled training data (seven different emotion
classes and an additional “neutral” class).

Images were represented using both RBG values as well as
by extracting LBP codes with three different radius param-
eter values: the default of 1, as well as 5 and 10. All three
LBP variants were processed using the encoding described
in Sec. 3.2 with the cyclic distance of Eq. 6. In order to
compare the influence of the cyclic adaptation to the origi-
nal EMD approximation (Eq. 5) LBP codes with radius set
to 1 were additionally encoded using the EMD approxima-
tion directly. All told, we use four CNN architectures and
five representations for an ensemble of 20 networks.

In order to predict emotion labels, we take a weighted
average of the 7D output vectors produced by our 20 en-
semble models. The selected class is the one with the high-
est probability in the resulting 7D average prediction vec-
tor. Weights reflect the relative importance of each ensemble
component. These were determined empirically by random
searching through different weight combinations using the
training data to evaluate the quality of each combination.
The best performing weights were selected for our tests and
are visualized in Fig. 4. Curiously, of the top ten mod-
els, only one uses the original RGB values. Despite being
the common practice for CNN based approaches, an RGB
representation seems to provide inferior results than those
obtained using more robust features as input.



Figure 4: Relative weights of CNN ensemble com-
ponents. Sorted left to right from the most impor-
tant to the least. Interestingly, of the top ten most
important networks, only one uses original RGB val-
ues, despite being the common practice in CNN
based approaches.

Training vs. fine-tuning. Due to the huge number of
model parameters, deep CNN are prone to overfitting when
they are not trained with a sufficiently large training set.
The EmotiW challenge contains only 891 training samples,
making it dramatically smaller than other image classifica-
tion data-sets commonly used for training deep networks
(e.g, the Imagenet dataset [32]).

To alleviate this problem, we train our models in two
steps: First, we fine-tune pre-trained object classification
networks on a large face recognition data-set, namely the
CASIA WebFace data-set [43]. This allows the network to
learn general features relevant for face classification related
problems. Then, we fine-tune the resulting networks for the
problem of emotion recognition using the smaller training
set given in the challenge.

Oversampling the input representations. Oversam-
pling [15] is the process of providing a network with several,
slightly translated versions of the same input image. In the
related work of [21] oversampling was shown to provide su-
perior age and gender classification performance on the Adi-
ence benchmark [13]. Here, we employ the same process with
all representations and all CNN architectures. Specifically,
our results, reported in Sec. 4 provide the performances ob-
tained using the following techniques:

• Center crop: The CNN was applied to image regions
of size 224×224 pixels, cropped from the center of the
input representation.

• Oversampling: We produce five 227 × 227 pixel re-
gions cropped from the input representation as follows:
four regions aligned with the four corners of each in-
put representation and one from its center. These five
regions, along with their mirrored versions were pre-
sented to the CNN. The prediction values of the CNN
were then averaged over all ten predictions.

As we later show, similarly to [21], oversampling gener-
ally provided better prediction accuracy and we therefore
employed it with all our networks in our ensemble.

Table 1: The EmotiW SFEW 2.0 Challenge. Break-
down of the SFEW 2.0 benchmark into the different
emotions classes.

Anger Disgust Fear Happy Neutral Sad Surprise Total
Train 178 52 78 184 144 161 94 891
Val 77 23 46 72 84 73 56 431

4. EXPERIMENTS
LBP encoding and mapping, as described in Sections 3.1

and 3.2, was implemented in Matlab. Training and testing
the networks was done using the Caffe open source frame-
work for Deep Convolutional Neural Networks [15]. We have
used two Amazon Web Services g2.8xlarge GPU machines,
each with 4 NVIDIA GRID GPUs, where each GPU has
1,536 CUDA cores and 4 GB of video memory.

Fine-tuning each of the networks on the CASIA WebFace
Database [43] required approximately four days. Additional
fine-tuning of the resulting networks the training set for the
EmotiW 2015 data set [10] required one more day. Emo-
tion prediction for a single image requires ≈500ms. This
time, however, may potentially be substantially reduced if
prediction was performed on image batches rather than in-
dividual images. Please see our project webpage1 for code
and additional details.

Our tests were performed on the EmotiW 2015 bench-
mark [10] which includes data from version 2.0 of the Static
Facial Expression in the Wild benchmark [9]. It was assem-
bled by selecting frames from different videos of the Acted
Facial Expressions in the Wild (AFEW), and then assign-
ing them one of the following seven emotion labels: angry,
disgust, happy, sad, surprise, fear and neutral. Images from
this data set are unconstrained and cover a wide range of
head poses and ages, both genders, different occlusions and
resolution qualities. Table 1 additionally provides a break-
down of the number of images in each emotion category for
the training and validation subsets.

4.1 Results
Table 2 summarizes the results on the validation set for

all of the different network architectures and image presen-
tations considered. Subscripts used for the LBP representa-
tions denote the value of the radius parameter values used
(default of 1, as well as 5 and 10). The use of the approx-
imate EMD without modifying it for cyclic codes – that is,
direct application of Eq. 5 to compute code-to-code distances
– is referred to as “w.o. cyclic”. We use “cyclic” to refer to
the modified distance of Eq. 6.

Several interesting observations can be made from these
results. First, in line with the ensemble weights reported in
Fig. 4, using RGB values as input does not necessarily pro-
vide the best performance. This is at odds with the com-
mon practice of applying CNNs directly to input images.
Presumably, pre-processing images using robust feature al-
leviates some of the challenges CNNs face when adopting to
a particular domain; learning can better focus on informa-
tion important to the recognition task, rather than filtering
out confounding factors such as illumination variations.

Also important are the differences between ensembles and
single CNNs. In all cases, whether by combining differ-

1Available: http://www.openu.ac.il/home/hassner/
projects/cnn_emotions



Table 2: Emotion classification results. The accuracy over all emotion classes is listed. Subscripts for the
LBP representations denote the values used for their radius parameters; w.o. cyclic refers to the use of the
approximate EMD of Eq. 5; and finally, cyclic refers to the modified distance of Eq. 6.

Validation Test
RGB LBP1, w.o. cyclic LBP1, cyclic LBP5, cyclic LBP10, cyclic

Baseline (provided by the Challenge authors) 35.33% 39.13%
GoogleNet - single crop 41.68% 39.34% 41.45% 41.68% 40.28% —
GoogleNet - Oversampling 41.21% 39.57% 40.98% 40.98% 41.45% —
VGG S - single crop 41.45% 39.34% 41.92% 41.92% 39.34% —
VGG S - Oversampling 40.04% 43.79% 42.38% 43.09% 41.21% —
VGG M-2048 - single crop 37.93% 38.17% 36.06% 40.98% 32.31% —
VGG M-2048 - Oversampling 40.74% 42.62% 36.76% 42.62% 33.72% —
VGG M-4096 - single crop 37.00% 41.92% 40.28% 40.28% 37.47% —
VGG M-4096 - Oversampling 37.93% 42.85% 44.73% 42.85% 40.98% —
Ensemble 46.13 48.94 47.3 47.54 47.3 —
Ensemble of all methods 51.75% 54.56%

ent networks applied to the same representation or different
representations used with the same architectures, ensembles
seem superior in performance than single networks. Though
this should come as no surprise, considering earlier related
work (e.g., [42]), evidence of the advantages provided by
CNN ensembles are still scares.

Finally, modifying the approximate EMD distance in or-
der to address rotations of the LBP codes slightly degrades
results. On the other hand, combining all distances appears
to provide complementary information and contributes to
improving overall accuracy.

Our results should be compared against the baseline per-
formance for the benchmark. These were obtained using
features produced from pyramids of Histogram of Gradi-
ents [3] and Local Phase Quantization [28] extracted from
the aligned faces and classified using a fusion of separate
support vector machines. In the majority of cases, our in-
dividual models outperformed the baseline, though not by
large margins. Ensemble results, however, boosted perfor-
mance substantially, by a remarkable 40% gain in perfor-
mance (15.36% improvement).

Tables 3 and 4 provide confusion matrices for the valida-
tion and test sets respectively. Evidently, the disgust emo-
tion was never classified correctly. This is consistent with
results previously reported for the 2013 Emotion Recogni-
tion in the Wild Challenge (e.g., [17]). This performance
may be due to the class being inherently more challenging
to classify or simply due to the relatively small number of
examples available for the class (see Table 1).

Finally, we provide a selection of correct and wrong classi-
fication results for all of the remaining six classes is provided
in Fig. 5. These show that at least in some cases, poor per-
formance may be traced to failures in the face alignment
step, rather than the recognition pipeline.

5. CONCLUSIONS
We present a substantial improvement over existing base-

line results on the Emotion Recognition in the Wild Chal-
lenge (EmotiW 2015), Static Facial Expression Recognition
sub-challenge (SFEW). To achieve this performance boost,
we make a number of novel contributions: We propose to
apply CNNs to pre-processed images rather than RGB, in
order to eliminate confounding factors and focus the net-
work’s efforts on variations due to class labels. To this end,
we convert images to LBP codes, designed to be robust to
illumination changes. In order to apply CNNs to these bi-

nary codes, we further describe a unique mapping of codes
to metric space by applying an approximation of the EMD.
Finally, multiple CNN architectures and representations are
combined in an ensemble by a weighted average of their pre-
dictions. Our results clearly demonstrate the advantage of
looking beyond RGB as the input space for CNNs, as well
as the complementary information offered by multiple rep-
resentations and network architectures.
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