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Abstract We identify two issues as key to developing effec-
tive face recognition systems: maximizing the appearance
variations of training images and minimizing appearance
variations in test images. The former is required to train the
system for whatever appearance variations it will ultimately
encounter and is often addressed by collecting massive train-
ing sets with millions of face images. The latter involves var-
ious forms of appearance normalization for removing dis-
tracting nuisance factors at test time and making test faces
easier to compare. We describe novel, efficient face-specific
data augmentation techniques and show them to be ideally
suited for both purposes. By using knowledge of faces, their
3D shapes, and appearances, we show the following: (a) We
can artificially enrich training data for face recognition with
face-specific appearance variations. (b) This synthetic train-
ing data can be efficiently produced online, thereby reduc-
ing the massive storage requirements of large-scale train-
ing sets and simplifying training for many appearance vari-
ations. Finally, (c) The same, fast data augmentation tech-
niques can be applied at test time to reduce appearance vari-
ations and improve face representations. Together, with ad-
ditional technical novelties, we describe a highly effective
face recognition pipeline which, at the time of submission,
obtains state-of-the-art results across multiple benchmarks.
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1 Introduction

Deep convolutional neural networks (CNN) have had a pro-
found impact on the face recognition capabilities of machine
vision systems. Although it is not entirely clear how CNNs
work so well, these capabilities can at least partially be at-
tributed to their complexity. Unlike simpler models previ-
ously used by older classification and recognition systems,
CNNs typically consist of millions of trainable parameters
combined in highly nonlinear relationships. Together, these
parameters allow CNN systems to learn the complex deci-
sion rules required to discriminate between different faces
of sometimes very similar people.

Fully realizing the potentials of CNN-based systems for
face recognition requires that their millions of parameters
are optimally assigned. To set their values, training is per-
formed using labeled examples; here, face images with asso-
ciated identity labels. Of course, the performances of trained
CNN systems will vary according to the nature of the data
sets used to train them. This relationship between perfor-
mance and training data naturally raises the question: what
is a good data set for training a face recognition CNN? Very
often, the answer to this question seems to be: the bigger the
data set, the better.

Realizing that the face recognition abilities of CNNs will
improve by increasing their training data, many have fo-
cused efforts on harvesting and labeling large training sets of
face images. Taigman et al (2014) trained a standard CNN
on 4.4 million labeled Facebook faces and achieved what
was, at the time, state-of-the-art performance on the Labeled
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Faces in the Wild (LFW) benchmark (Huang et al, 2007).
Some time later, Parkhi et al (2015) proposed the VGG-
Face representation which they trained on 2.6 million faces,
and Face++ proposed its Megvii System (Zhou et al, 2015)
which was trained on 5 million faces. All of these are pale
in comparison to the Google FaceNet (Schroff et al, 2015)
which used 200 million labeled faces for training.

These data collection efforts undoubtedly helped im-
prove face recognition accuracy. Ideally, however, effective
training sets must reflect ample inter- and intra-subject ap-
pearance variations in order for a network to learn what
makes faces similar or not. As we show in Fig. 1, exist-
ing sets are limited in the intra-subject appearance variations
they provide (Masi et al, 2018). Moreover, collecting more
images does not guarantee obtaining more appearance vari-
ations, as demonstrated in Fig. 2 for head yaw angles.

A first key question discussed in this paper is therefore:

Question 1: How can we effectively and efficiently increase
the appearance variations of our face image training set?

Ostensibly, by answering this question and training a
CNN on a sufficiently rich data set, the network would
be robust to such appearance variations. In practice, even
well-trained networks can be sensitive to changing ap-
pearances at test time. One way to mitigate these effects
is to normalize the appearances of test faces, suppressing
variations due to nuisance factors and making them eas-
ier to compare. The second question we address is therefore:

Question 2: How can we reduce nuisance appearance
variations of face images at test time?

There is an obvious symmetry to these two questions: Where
the first seeks ways of increasing the variations of appear-
ances during training, the second seeks to reduce them at
testing. We show that beyond this symmetry, both questions
also share a possible solution—that is, by using the same
face-specific data augmentation to answer them both.

Specifically, we offer the following contributions:

– Fast rendering. We explain why, under certain circum-
stances, rendering novel views of faces appearing in sin-
gle images can be done at the same computational cost
as standard 2D image warping.

– Online augmentation in training. We use our fast ren-
dering during training to enrich our training set, on the
fly, with intra-subject appearance variations, thus effec-
tively training our CNN on a much larger training set.

– Novel recognition pipeline. We describe a novel face
recognition pipeline that uses our fast rendering to pro-
duce multiple, well-aligned versions of input test im-
ages, thereby reducing differences due to pose in test
face appearances. We further show that by pooling the

CNN features from these synthetic images, we obtain a
highly robust face image representation.

Beyond these technical contributions, we further describe a
novel training set which we use to increase the benefits of
our contributions:

– The COW face set. We offer a processed combination
of the publicly available data sets: MS-Celeb-1M (Guo
et al, 2016), Oxford VGGFace (Parkhi et al, 2015), and
CASIA WebFace (Yi et al, 2014). In total, our set con-
sists of ∼4 million images which we further increase to
far greater numbers using our augmentation techniques.

We demonstrate the effects that different training set sizes
have on accuracy—in particular, training on the CASIA
WebFace collection (Yi et al, 2014) with its 495K faces and
our combined COW dataset, with and without augmenta-
tions. Note that augmentations do not change the numbers of
subjects available for training but rather increase their intra-
class appearance variations (see Fig. 1 for more details).

Finally, we test our approach extensively, showing ab-
lation studies and reporting results on the Labeled Faces in
the Wild (LFW), YouTube Faces (YTF) benchmarks, and
the recent IJB-A and IJB-B benchmarks. These results show
that our fast, face-specific augmentations can often replace
labor-intensive and storage-demanding harvesting and label-
ing of huge training sets. We note that code, CNN models,
and data used in this paper will be publicly available on our
project webpage.1

2 Related work

Face recognition. Face recognition is one of the central
problems in computer vision and, as such, work on this
problem is extensive. As with many other computer vision
problems, face recognition performances sky-rocketed with
the introduction of deep learning techniques, and in particu-
lar, CNNs. Though CNNs have been used for face recog-
nition as far back as Lawrence et al (1997), only when
massive amounts of data became available did their perfor-
mance soar. This was originally demonstrated by the Face-
book DeepFace system of Taigman et al (2014) which used
an architecture not unlike the one used by Lawrence et al
(1997)—but with over 4 million images used for training,
they obtained far more impressive results.

Since then, CNN-based recognition systems frequently
break performance barriers with some notable examples—
including the Deep-ID 1-3 systems of Sun et al (2014b,a,
2015). They, and many others since, developed and trained
their systems using far fewer training images at the cost of
somewhat more elaborate network architectures.

1 Available: www.openu.ac.il/home/hassner/projects/

augmented_faces
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Dataset #ID #Img #Img/#ID

Facebook (Taigman et al, 2014)∗ 4,030 4.4M 1K
Google (Schroff et al, 2015)∗ 8M 200M 25

CASIA WebFace (Yi et al, 2014) 10,575 494,414 46
VGGFace (Parkhi et al, 2015)∗∗ 2,622 2.6M 1K
MS-Celeb-1M (Guo et al, 2016)∗∗ 100K 10M 100
MegaFace (Kemelmacher-Shlizerman et al, 2016) 690,572 1.02M 1.5
UMDFaces (Bansal et al, 2017) 8,277 367,888 45

Aug. pose+shape (Masi et al, 2016b) 10,575 1,977,656 187
Noisy COW 68,906 5,242,931 76
COW 62,955 4,069,066 64
Aug. COW, pose+shape+qual. 62,955 18,634,779 296
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Fig. 1: Face data set statistics. (a) Comparison of our augmented dataset with other face datasets along with the average
number of images per subject. (b) Our improved distribution of per-subject image numbers, obtained by augmentation (Aug.),
avoids the long-tail effect of the CASIA set (Yi et al, 2014) (also shown in (a) (Masi et al, 2016b)).∗ Not publicly available.
∗∗ See important notes in Sec. 7 regarding the actual numbers of images and subjects used in our tests.

Fig. 2: Yaw angle frequencies. Despite being much larger
than LFW, CASIA does not offer significantly more head
yaw angle variations. Regardless of absolute size, both CA-
SIA and LFW do not offer examples of the yaw angle varia-
tions in the IJB-A test set.

Though novel network architecture designs can lead to
better performance, further improvement can be achieved by
collecting more training data. This has been demonstrated
by Google FaceNet (Schroff et al, 2015) which was devel-
oped and trained on 200 million images. Beside improving
results, they also offered a fascinating analysis of the conse-
quences of adding more data: apparently, there is a signifi-
cant diminishing returns effect when training with increas-
ing image numbers. Thus, the leap in performance obtained
by going from thousands of images to millions is substan-
tial, but increasing the numbers further provides smaller and
smaller benefits. One way to explain this is that the data used
by Google Facenet and others suffers from a long tail phe-

nomenon (Yi et al, 2014) where most subjects in these huge
datasets have too few images available for the network to
learn intra-subject appearance variations.

Evaluation data sets. These methods were all evaluated on
the LFW dataset, which was the de facto standard for mea-
suring face recognition performances. Many of these LFW
results, however, already reached near-perfect accuracy, sug-
gesting that LFW is no longer a challenging benchmark for
today’s CNN-based systems. Another relevant benchmark,
also frequently used to report performances, is the YouTube
Faces (YTF) set (Wolf et al, 2011b). It contains uncon-
strained face videos rather than images, but it too is quickly
being saturated.

Recently, IJB-A (Klare et al, 2015) and IJB-B (Whitelam
et al, 2017) were released in order to once again push ma-
chine face recognition capabilities. They offer several nov-
elties compared to existing sets, including template, rather
than image-based recognition and a mix of both images and
videos. With many profile views, low-quality images, and
occluded faces, both are also far tougher than previous col-
lections. Not surprisingly, dominating performance on both
benchmarks are CNN methods (Chen et al, 2016).

Data augmentation. Data augmentation techniques are
label-preserving transformations typically applied to train-
ing images Chatfield et al (2014). Such methods are known
to improve the accuracy of CNN-based methods and prevent
overfitting (Chatfield et al, 2014). Popular augmentation
methods include simple, geometric transformations such as
oversampling (multiple image translations by cropping at
different offsets) (Krizhevsky et al, 2012; Levi and Hass-
ner, 2015), mirroring (horizontal flipping) (Chatfield et al,
2014; Yang and Patras, 2015), rotation (Xie and Tu, 2015),
and various photometric transformations (Krizhevsky et al,
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2012; Simonyan and Zisserman, 2015; Eigen and Fergus,
2015).

Recently, some researchers have started applying more
domain-specific augmentation techniques. One example is
the work of McLaughlin et al (2015) which proposes to aug-
ment training data for a person re-identification network by
replacing image backgrounds. We propose a far more elab-
orate, yet easily accessible means of data augmentation. Xie
et al (2015) proposed a so-called task-specific data augmen-
tation method. They, as well as Xu et al (2015), do not syn-
thesize new data as we propose to do here, but rather offer
additional means of collecting images from the Internet to
improve learning in fine-grained recognition tasks. This is,
of course, very different from our own approach.

View synthesis for face recognition. The idea that face
images can be synthetically generated in order to aid face
recognition systems is not new. To our knowledge, it was
originally proposed by Hassner (2013) and then effectively
used by Taigman et al (2014) and Hassner et al (2015). Con-
trary to us, they all produced frontal faces which are presum-
ably better aligned and easier to compare. They did not use
other transformations to synthesize images (e.g., other view-
points). More importantly, their images were used to reduce
appearance variability. Like them, we reduce test time vari-
ability, but we do so in a more effective manner.

Mokhayeri et al (2018) also used face synthesis to aug-
ment the gallery set when only a single, reference image
is available. Finally, recent efforts used 3D rendering tech-
niques to inflate the training set. Masi et al (2016b) applied
this method to synthesize novel poses, expressions, and dif-
ferent 3D face shapes. Crosswhite et al (2017) improved
their approach by increasing the size of the VGGFace set
of Parkhi et al (2015) with novel 3D poses and illumination
changes (Crispell et al, 2016).

GAN for face synthesis. Recently, generative adversarial
nets (GAN) (Goodfellow et al, 2014) were proposed as a
novel means for data augmentation and synthesis. GANs
were shown to synthesize novel samples from the under-
lying appearance distribution through a generative model.
This ability proved to be particularly effective for structured
object classes such as faces.

The GAN’s generative model is trained with an adver-
sarial loss and learns to produce novel, realistic samples
which fool a discriminator network. This approach was used
in Zheng et al (2017) to inflate a limited training set for re-
identification. Although this approach showed promising re-
sults, regular GANs, such as the one proposed by Zheng et al
(2017), can generate novel images but not new subjects. It
further offers no explicit control over the identity of the gen-
erated sample.

For these reasons, this approach does not meet the stan-
dard definition of data augmentation (Chatfield et al, 2014).

Consequently, the approach softly assigns generated sam-
ples uniformly to all training subjects when training for clas-
sification rather than assigning the synthesized samples to
specific subjects. Thus, this GAN-based approach acts more
as a regularizer in the loss function rather than a data aug-
mentation technique. These observations can be appreciated
qualitatively by visually inspecting the samples generated
by Zheng et al (2017). The synthetic individuals they pro-
duce appear to be interpolations between existing subjects
rather than novel samples.

Another promising GAN-based approach was proposed
by Zhao et al (2017). They proposed to render faces simi-
larly to us, but they then apply a GAN to improve the real-
ism of the generated faces. Since the generator can modify
a synthetic profile image to match the real, mainly frontal,
face distribution in unexpected ways, the system trains with
multiple loss functions in order to preserve the identity and
pose of the refined face. The method reached state-of-the-art
results on the IJB-A benchmark, though their method was
separately tuned ten times, one for each split of the dataset,
and so data augmentation was not entirely responsible for
the domain shift between the train and test sets.

Discussion: GAN-based vs. graphics-based synthesis.

Classic data augmentation techniques apply procedu-
ral transformations which use domain knowledge. These
methods leverage domain knowledge acquired over several
decades of work on computer vision and graphics. Face im-
ages in particular offer an abundance of such domain knowl-
edge, along with effective, well-established methods for pro-
cessing and augmenting face images. By leveraging this
domain knowledge, these augmentation techniques can be
applied rather easily, without requiring additional training
steps. Beyond simplifying their adoption, graphics-based
methods inject new information into the training set, which
is not reflected in the training distribution.

A drawback of these graphics-based augmentation
methods, however, is the difficulty of ensuring realistic-
looking synthetic images. GAN-based methods, on the other
hand, learn from training data to produce images which are
faithful to the underlying distribution. These images can
therefore be realistic (Zheng et al, 2017). We note, however,
that using these methods can result in loss of subject-specific
appearances, if proper losses are not added to the training
process (Zhao et al, 2017). In addition, GAN-based methods
cannot be used to generate new views without retraining. Fi-
nally, GAN-based synthesis uses deep networks at test time:
a forward pass through the generator network. Unlike our
rendering method, GAN systems therefore require far more
computation for a forward pass through their generator net-
works, and the use of GPU hardware.
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3 Overview of our face-specific augmentations

We augment an existing seed face dataset, enriching it with
substantially more per-subject appearance variations, yet
without changing subject labels or losing meaningful in-
formation. Specifically, we propose efficient and effective
methods for generating (synthesizing) new face images with
the following face-specific appearance variations:

1. Pose: Simulating face image appearances across unseen
(novel) 3D viewpoints.

2. Shape: Producing facial appearances with different un-
derlying 3D generic face shapes.

As we explain in Sec. 5.3, in practice, we use these augmen-
tation methods in concert with standard, generic augmen-
tation techniques such as 2D transformations (i.e., in-plane
face alignment) and image quality adjustments obtained by
synthetic noise.

3.1 The importance of generic 3D face shapes

Our augmentation methods leverage the extremely efficient
rendering methods described in Sec. 4. This efficiency is
partly achieved by making extensive use of generic 3D face
shapes as proxies for rendering faces to new views. We em-
phasize that fixed, generic shapes are used instead of at-
tempting to fit different 3D face shapes to different faces
or deforming the 3D face shapes to account for facial ex-
pressions. This approach was originally proposed by Has-
sner et al (2015) for the purpose of face frontalization. In
fact, augmentation technique (1) above can be considered an
extension to multiple views of their frontalization method.
Conceptually, however, we use this approach very differ-
ently than they do.

It is worth noting that our use of generic face shapes con-
tradicts previous claims regarding the importance of 3D face
shape estimation for face alignment and recognition (Taig-
man et al, 2014). Contrary to their claims—that accurate 3D
face shapes are important for preserving subject-specific ap-
pearances when generating novel views—we ignore subject-
specific 3D shapes and instead render all faces using the
same, small, fixed collection of generic 3D face shapes. As
evident qualitatively in, e.g., Fig. 3, and quantitatively in our
recognition results, although the use of generic shapes intro-
duces appearance variations, barring extreme view changes,
these typically have a limited effect on perceived identity
and instead provide additional sources of appearance nui-
sances that the network should learn to ignore.

3.2 Pose variations

Given a face image, in order to generate unseen viewpoints
we use a technique similar to the one proposed by Hassner

et al (2015) for frontalization. We extend their work to mul-
tiple viewpoints, change the manner in which we estimate
the viewpoint for the face in the input image, and expedite
their rendering process.

For input image, I, we compute the six degrees of free-
dom (6DoF), 3D viewpoint of the face using the Face-
PoseNet (FPN) of Chang et al (2017). We then use the esti-
mated viewpoint to render the input face to novel viewpoints
at fixed yaw angles: θ = {0◦,±22◦,±40◦,±55◦,±75◦}. We
detail this process in Sec. 4.

3.3 3D shape variations

Rather than using a single generic 3D shape or estimating it
from the image directly, we instead extend our rendering by
using multiple generic 3D faces. In particular, we use a set
of generic 3D shapes S = {S j}10

j=1 and simply repeat the
viewpoint synthesis procedure using the same efficient ren-
dering techniques described in Sec. 4, with these ten shapes
instead of only a single 3D shape.

We used 3D generic shapes from the publicly available
Basel 3D face set (Paysan et al, 2009). It includes ten high-
quality 3D face scans captured from different people with
different face shapes and varying in gender, age, and weight.
The models are further well aligned to each other, and so
3D pose estimation of an input face image is only required
once; the estimated pose can be used for all ten 3D shapes as
they share the same coordinate frame. In our work, we fur-
ther take advantage of the correspondences between shapes
when modifying these models to allow rendering full heads
and backgrounds. Details on these modifications are pro-
vided in Appendix A.

3.4 Qualitative case studies

Qualitative examples of this process are provided in Fig. 3.
The figure illustrates the ten generic models we use in our
work (top, rendered in grayscale). We show several input
images, selected to represent a variety of ethnic groups, gen-
ders, ages, and facial expressions. Alongside each input im-
age we show our synthesized novel images, with columns
representing the different 3D face shapes and rows repre-
senting different viewpoints. Subjects in these images typi-
cally remain identifiable despite the use of varying, some-
times very different, 3D shapes used for rendering. Still,
each image is slightly but noticeably different from the rest,
thereby introducing appearance variations to this subject’s
image set.

Though the use of generic 3D face shapes may be coun-
terintuitive, and indeed contradicts claims made in previous
work, the rendered views remain identifiable, and the choice
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3D Shapes 3D Shapes

Fig. 3: Effect of 3D shape on rendered faces for multiple poses. Top: The ten generic 3D face shapes used for rendering.
Bottom: Each input image on the left is rendered at different poses (rows) and with different 3D shapes (columns). Different
shapes induce subtle appearance variations yet do not change the perceived identity of the face in the image, irrespective
of the gender, expression, occlusions, age, and ethnicity of the input subject. A higher resolution version of this picture is
available in the supplementary material.

of 3D shape for the rendering has a limited effect on the per-
ceived identity. This is especially remarkable, considering
the neutral expression of the 3D face shapes compared to the
varying expressions of the input faces. The perceived ethnic-
ity and age are also mostly unaffected by the choice of 3D
face shape, even if it is clearly mismatched with the face im-
age. A potential consequence is that for unconstrained face

images, estimating 3D face shapes is unnecessary if the goal
is to generate new views; texture encodes sufficient informa-
tion for this purpose. The observation is consistent with the
conclusions of (Hassner et al, 2015).
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4 Face rendering at (2D) warp speed

Given a face image, we render novel views of this face
from different poses (Sec. 3.2) and use different generic 3D
shapes (Sec. 3.3). Existing rendering techniques, in partic-
ular methods for synthesizing new views of faces from sin-
gle images, involve two standard and well-understood steps
sometimes referred to in computer graphics literature as tex-
ture mapping and ray casting / rasterization.

In light of the importance of rendering as a key step
in computer graphics applications, tremendous efforts were
dedicated to expediting state-of-the-art rendering engines to
fractions of a second, even for complex 3D scenes. Spe-
cialized computer hardware—the graphical processing unit
(GPU)—was also developed for this purpose. More details
on these techniques can be found in standard computer
graphics textbooks (Hughes et al, 2014).

Our work is tangential to these efforts: we show that by
assuming one (or a few) generic 3D shapes and fixed desired
output viewpoints, a great deal of the effort required to ren-
der new facial views can be performed at preprocessing—
thereby substantially reducing the online effort required to
generate novel views and the complexity of the system re-
quired for rendering.

4.1 Face pose estimation and texture mapping

Texture mapping of an image I (i.e., a training or test image
of a face viewed in unconstrained settings) onto a 3D surface
S⊂R3 is the process of assigning every 3D surface position
P = (X ,Y,Z) ∈ S with a location q = (u,v) in the image
(where image coordinates are often normalized to the range
of u,v∈ [0,1]). For our purposes, S is a 3D face shape which
is assumed to be a predetermined, generic 3D face.

We assume that a bounding box around the face is pro-
vided either by the data set or by the use of a face detector
such as the one proposed by Yang and Nevatia (2016) and
used by our method. Texture mapping is performed by esti-
mating the 3D pose (viewpoint) of the face in the bounding
box, in the coordinate frame of the 3D face shape.

Rendering is typically agnostic to the particular method
used to estimate the 3D pose. In the work described by Hass-
ner (2013); Hassner et al (2015); Masi et al (2016b,a, 2017);
Taigman et al (2014), pose estimation was performed by de-
tecting facial landmarks using landmark detectors such as
the supervised descent method of Xiong and De la Torre
(2013). In our implementation, we instead use the recent
FacePoseNet (FPN) (Chang et al, 2017). FPN bypasses land-
mark detection by regressing a 6DoF 3D face transformation[
RI tI

]
directly from image intensities by using a CNN. It

was shown to surpass the accuracy of landmark detectors
when used for alignment in face recognition systems.

We assume a fixed intrinsic camera matrix KI , estimat-
ing only the rotation and translation matrices RI and tI in
the 3D model’s coordinate frame. We thus obtain a perspec-
tive camera model mapping the 3D face shape S to the input
image so that qi ∼MI Pi where MI = KI

[
RI tI

]
is the es-

timated camera matrix for the input view. Hence, matrix MI

can be used to map any point on the 3D surface onto the
input image, thereby providing the desired texture map.

4.2 Ray casting / rasterization

Following texture mapping, S is projected to the desired
view, J. To this end, the output view’s camera matrix, MJ =

KJ
[
RJ tJ

]
, is manually specified in order to set the de-

sired output viewpoint (e.g., frontal view for face frontal-
ization (Hassner et al, 2015)). This includes setting both the
intrinsic camera parameters in KJ and the 3D rotation and
translation in RJ tJ in the coordinate frame of the 3D shape.
The matrix MJ is then used to intersect the rays emanat-
ing from J’s center of projection, passing through each of its
pixels, pi = (xi,yi)∈ J, and the surface of S. Each such inter-
section is a 3D point Pi = (Xi,Yi,Zi) ∈ S. Following the tex-
ture mapping of Sec. 4.1, these 3D points are already linked
to locations qi = (ui,vi) in the input face image, I. Thus, the
pixel pi in the output image is assigned intensity values by
sampling I at its determined qi.

4.3 Precomputing output projections

In a typical graphics pipeline, ray casting (Sec. 4.2) is one of
the most time-consuming steps. It computes the locations of
intersections between the rays passing through each output
pixel and the surface of an object in the 3D scene (here,
a face). This process often involves Z-buffering or binary
space partitioning methods which determine visibility of the
3D shape at each output pixel (Hughes et al, 2014).

As previously mentioned, these steps can be expedited
using specialized hardware, optimized code, and various ap-
proximation methods. Importantly, however, when the 3D
shape and the output views are both fixed, these steps only
need to be performed once, at preprocessing. Subsequent
renders using the same shape and pose but different tex-
tures (input images) can skip this step. Hence, future render-
ing of these is only as computationally expensive as texture
mapping—here, viewpoint estimation for the input image
(Sec. 4.1) along with standard 2D image warping required
to sample the input image and assign its intensities to pixels
in the output view.

During preprocessing, we use a standard rendering en-
gine to perform ray casting of our generic 3D face shape
S onto a desired output view J. This process is performed
once, regardless of the number of images we will later warp.
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We use the public code provided by Hassner et al (2014) for
this purpose. For each output, we obtain the 2D pixel loca-
tion pi ∈ J and the 3D coordinates Pi ∈ S projected onto that
pixel (i.e., the 3D location of the surface point Pi visible at
pi). This information is then stored in a fixed lookup table
U, simply defined as:

U(pi) = Pi. (1)

In practice, U is stored as an N×M× 3 matrix, where
N and M are the dimensions of the output view and the last
dimension indexes the X ,Y , and Z coordinates of the 3D
point on the surface of the generic 3D face model projected
onto each pixel. The Z component of U is visualized in Fig. 4
along with the overall rendering process for two views.

XY

Input image I

Shape S

yaw

Z

Fig. 4: Precomputed projections and rendering process.
A generic 3D face shape S is used to render an input image I
at different views J. Matrices U j (Eq. (1)) are precomputed
offline and visualized as a heat map of the Z component for
a frontal (J0) and half-profile (J45) rendered face. Each pixel
stores the distance along the ray passing through it and em-
anating from the center of projection for the desired output,
to where the ray intersects the surface of the 3D face. The
rendering is achieved by precomputing all the information
except for texture mapping MI , which happens online. The
texture is then transfered to each view using U. This process
is implemented by the simple, ten-line Python code provided
in Appendix B.

4.4 Rendering with precomputed projections

Given an input image I containing a face in unconstrained
settings, we use the following simple procedure to render it
to a desired new view. A simple, ten-line Python code snip-
pet implementing this process is available in Appendix B.
This code should be compared with the more involved and
computationally heavier implementations required without
precomputed projections.

We first estimate the 3D pose of the face, as described in
Sec. 4.1. This provides a camera matrix MI associating 3D
points on the surface of S with pixels in I. Let

q̄ = MIŪ, (2)

where Ū is matrix U reshaped to a 4× (NM) matrix such
that the columns are the 3D points in homogeneous nota-
tion, stored in U. Matrix q̄ is then a 3× (NM) matrix with
columns representing the 2D projections of these 3D points
onto I, also in homogeneous coordinates.

An output view J can then be produced simply by sam-
pling image I, interpolating its values at coordinates q̄ (fol-
lowing conversion to Euclidean coordinates). Sampled in-
tensities are mapped back to the output view J by using the
correspondence between columns in q̄, columns in Ū, and
(x,y) pixel locations in U.

4.5 Analysis of rendering runtime

The rendering process described above includes precisely
the same steps as standard inverse warping (Szeliski, 2010).
Compared with, for example, the 2D warping regularly per-
formed in real time even on mobile devices, the only differ-
ence is in applying a 3×4 camera matrix transformation to
homogeneous 3D coordinates, rather than a 3×3 projective
transformation.

In addition to rendering, this process also includes esti-
mating the 3D pose of the input image (Sec. 4.1). By using
the FPN (Chang et al, 2017) and assuming a GPU, this pro-
cess is remarkably fast and in particular, faster than most
state-of-the-art landmark detection methods routinely used
for both 3D and 2D face alignment.

5 Training a CNN with face-specific augmentation

Our fast rendering of Sec. 4 does not, on its own, provide
improved face recognition accuracy. As we explain next,
it does enable face-specific data augmentation without the
penalties of the heavy processing typically associated with
3D rendering.
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5.1 Network architectures and training

We experimented with using the following deep network ar-
chitectures: VGG-19 (Simonyan and Zisserman, 2015) and
the very deep ResNet-101 of He et al (2016). We train
these networks on various face recognition training sets,
with and without augmentations. The descriptions below re-
fer to ResNet-101 as it provided superior results in our tests.

For the specific case of ResNet-101, we keep all layers
{Wk,bk}101

k=1 of our networks except for the last linear clas-
sification layer which we train from scratch. This layer pro-
duces a mapping from the embedded features x∈RD (pool5
∈ R2048) to the subject labels in our training set (e.g., the
N=62,955 subjects of our COW set; see Sec. 7).

Fine-tuning is performed by minimizing the standard
softmax loss:

L ({Wk,bk}) =−∑
t

ln
(

eyt
l

∑
N
g=1 eyt

g

)
(3)

where yt = W101xt>+b101, l is the ground-truth index over
N subjects and t indexes all training images. Eq. (3) is op-
timized using stochastic gradient descent (SGD) with stan-
dard `2 norm over the learned weights and momentum.

Alternative loss function. In addition to the standard soft-
max loss of Eq. (3), we experimented with the angular-
softmax (ASM) of Liu et al (2017a). In this case, the last
classification layer consists only of weights without the bi-
ases, and the loss is modified to normalize each column (cor-
responding to each training subject) in the weight matrix
to have `2 norm one. That is, the classification vector y of
Eq. (3) becomes y = W101x> and can be written as:

y = ‖x‖cos
(
mθg

)
,

∥∥Wg
∥∥= 1, (4)

where θ is the angle between the feature vector x and the
subject represented by the g-th column of W, denoted by
Wg. In our implementation we used the margin m = 2. For
further details refer to Liu et al (2017a).

Training hyper-parameters. When updating the weights,
we learn the classification layer faster since it is trained
from scratch while other network weights are updated with
a learning rate an order of magnitude lower. Specifically, we
initialize the classification layer with parameters drawn from
a Gaussian distribution with zero mean and standard devia-
tion 0.01. Bias is initialized to zero.

Since the classification layer is very large, we trained our
ResNet-101 with a mini-batch of 16 augmented samples on
six GPUs simultaneously, for an effective batch size of 96.
The learning rate µ for the entire CNN is set to 1e-3, except
the classification layer which was trained with a learning
rate of µ×10. The final learning rate is 1e-5. Learning rate

is decreased by an order of magnitude when validation ac-
curacy for the fine-tuned network saturates. Meanwhile, bi-
ases are learned twice as fast as other weights. For all other
parameter settings, we use the same values as originally de-
scribed by Krizhevsky et al (2012). The models fine tuned
on our COW training set (Sec. 7), with and without augmen-
tation, were trained for about five days and were initialized
from weights previously obtained by training on our Noisy
Aug. COW for approximately two weeks.

5.2 Training with on-the-fly data augmentation

In Sec. 4.5 we show that rendering new views for faces, us-
ing fixed, generic 3D face shapes and predetermined output
views, is as fast as 2D image warping. This result allows
us to apply our face-specific data augmentation techniques
from Sec. 3 on-the-fly, during training, and so eliminates
the storage requirements for multiple augmented versions
of each training face image.

Specifically, we introduce a novel data layer to the
face recognition networks described in Sec. 5.1. This layer
produces augmented images on-the-fly while training. Of
course, such online data augmentation has been regularly
used by others since the seminal work of Krizhevsky et al
(2012) and has also been applied when training deep net-
works for face recognition (Günther et al, 2017). To our
knowledge, however, we are the first to propose face-specific
data augmentation methods that involve complex 3D trans-
formations applied on-the-fly while training; previous meth-
ods focused on generic augmentation techniques involving
simple 2D and photometric transformations.

In practice, we employed a hybrid approach to on-the-
fly augmentation: For each training image, we precompute
the actual 3D transformations (i.e., run FPN; Sec. 4.1) and
store estimated poses offline. This requires storage for only
six floating point numbers per training face, representing the
three rotation and three translation vectors aligning a generic
3D face with the image. During training, rendering train-
ing faces to multiple novel views using multiple generic 3D
faces is performed on-the-fly.

5.3 Training with multiple synthetic and real images

Our pipeline employs a single CNN trained on both real and
augmented data generated as described in Sec. 3 and loosely
inspired by Masi et al (2016b, 2017). Specifically, the train-
ing uses the following multiple versions of each image:

– 2D alignment to frontal and profile views. Training
faces are aligned and warped using a simple 2D, in-
plane, similarity transform to one of two ideal coordi-
nate systems: roughly frontal facing faces (face yaw es-



10 Iacopo Masi∗ et al.

timates in [−30◦, ...,30◦]) are aligned with a frontal fac-
ing template; profile images (all other yaw angles) are
aligned to a profile face view.

– Novel view rendering. Each training image is
rendered from five novel views in yaw angles
{0◦,±22◦,±40◦,±55◦,±75◦}, as described in Sec. 3.2.

– 3D generic shape. Synthesized views are produced by
randomly selecting a single 3D generic face model from
the ten in S as the underlying face shape (see Sec. 3.3),
thereby adding shape variations.

– Generic image quality variations. 2D aligned images
are further subjected to randomly determined quality
augmentation with Gaussian blur or quantization arti-
facts. These are standard augmentation techniques.

On average, the approach synthesizes 4.5 novel samples
given an input image. This augmented set always includes a
2D, in-plane aligned image, as well as other novel views, de-
termined according to the estimated viewpoint. If the input
face is determined to be in profile view, we do not frontalize
it to avoid introducing artifacts when estimating occluded
parts of the face (Masi et al, 2018).

Specifically, if a face is near frontal (|yaw| < 15◦) we
render it to all views as shown in Fig. 3; if viewed close at or
near profile (|yaw|> 40◦) we render it to the two near profile
views; otherwise we render to {40◦,55◦,75◦}. Additionally,
if the face image is near frontal, we apply soft-symmetry
following the approach by Hassner et al (2015).

The augmented set also contains a single-image quality-
based augmentation (also aligned using 2D similarity).
Later, in Sec. 8 we provide results showing the effect of our
augmentation on recognition accuracy. We further evaluate
the effect that the size of the underlying seed training set has
on recognition.

6 Recognition with on-the-fly data augmentation

Previous methods commonly used face alignment in 2D and
3D to reduce appearance variations at test time and make
face images easier to compare (Wolf et al, 2011b; Hassner,
2013; Taigman et al, 2014; Hassner et al, 2015; Masi et al,
2016b, 2018). We propose a different approach to the use of
aligned faces at test-time.

6.1 Deep face recognition

Given a test face image, we first obtain a bounding box
around the face with the face detector of Yang and Nevatia
(2016). Our learned ResNet-101 CNN is then applied to this
box and used to generate a face feature vector—the pool5
layer output—as our face representation, x.

We further specialize the representation x to the tar-
get benchmark by applying cheap, unsupervised, principal

component analysis (PCA) learned from the training splits
of the test benchmark. Power normalization is then applied
to the PCA projected features. This step is widely used in
Fisher-vector encoding schemes to improve their represen-
tation power (Sánchez et al, 2013). Finally, the similarity of
two faces, s(x1,x2), is their correlation score.

6.2 Pooling across augmented faces

Ideally, a deep network optimally trained for face recogni-
tion should produce an identical face descriptor for different
images of the same subject: After all, the similarity between
two generated descriptors reflects a similarity between the
subject identities in the two images, and should be maximal
for two images of the same subject, regardless of any nui-
sance factors in each image.

In practice, this rarely happens (if ever). No matter how
well the network is trained, appearance variations in the in-
put image affect the values of the output descriptors gener-
ated by the network. Thus, although different photos of the
same subject under, say, different viewpoints should be as-
signed the same descriptor, different viewpoints change the
values of the descriptors generated by the network.

We consider these descriptor value variations as noise
and use our face-specific data augmentation to suppress it.

For a test face image, we generate multiple augmented
versions of the face, using the methods detailed in Sec. 3,
and extract deep features for each of these images. This
process introduces nuisance variations to the input images,
which are expressed as noise affecting the values of the de-
scriptors generated by the network.

Assuming these descriptors are all noisy variations of the
same subject-specific descriptors, we apply element-wise
averaging (average pooling) of these descriptors for simple
noise removal. The result is a single descriptor represen-
tation for each image, no matter how many augmentations
were applied in practice. This process is visualized in Fig. 5.
We show how this pooling affects the quality of our face
representations in Sec. 8.

It is instructive to compare this process with the ap-
plication of alignment and new view synthesis by previ-
ous work (Wolf et al, 2011b; Hassner, 2013; Taigman et al,
2014; Hassner et al, 2015; Masi et al, 2016b, 2018). These
previous methods selected a single, ideal view, and aligned
input faces to that coordinate system. Unsuitable views (e.g.,
frontal for an input profile image) or erroneous alignments
(e.g., when landmark detection failed) result in corrupt de-
scriptors and failure of recognition. Our approach mitigates
these problems by pooling multiple descriptors from multi-
ple alignments.
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Fig. 5: Pooling across augmented faces. (a) Input test face
photo is used to produce multiple synthetic views (b) using
our face-specific augmentation method. (c) Deep features
from our face recognition CNN are extracted, (d) one for
each synthetic view. Finally, (e) element-wise average pool-
ing is used to reduce the effects of the synthetically gener-
ated viewing variations on the face descriptors.

Fig. 6: Pooling across video frames for recognition. (a)
Frames from an input face video. (b) Each frame is pro-
cessed as described in Sec. 6.2 (see also Fig. 5), producing
(c) one robust descriptor per frame. Finally, (d) Element-
wise average pooling of the per-frame descriptors is used to
produce a single robust descriptor for the entire video.

6.3 Video and media pooling

The same rationale described in Sec. 6.2 is applied when
processing multiple frames in a face video and multiple me-
dia sources in the same template. Specifically, we apply the
same average pooling to the per-frame face descriptors of
Sec. 6.2. This process, illustrated in Fig. 6, provides a single
descriptor per video sequence, regardless of the number of
frames the video originally contained.

In some cases, multiple images and videos represent a
subject. An example is the templates in the recent IARPA
Janus benchmarks for unconstrained face recognition (Klare
et al, 2015; Whitelam et al, 2017). We process the medias
contained in a single template, producing per-media repre-
sentations. These representations are then average pooled to
obtain a single feature embedding for the entire template.

6.4 Pooling with confidence

Similar template pooling schemes (sometimes also referred
to as media pooling) were proposed by others (Sankara-
narayanan et al, 2016a; Ranjan et al, 2017; Masi et al,

2017; Crosswhite et al, 2017). Unlike previous work, how-
ever, we pool already averaged representations (Sec. 6.2 and
Sec. 6.3). We additionally found that better results are ob-
tained by weighted averaging using some measure of confi-
dence in the quality of the input face image.

We use the confidence reported by the standard face de-
tector of Yang and Nevatia (2016) to weigh the importance
of each image in the final representation. Each video in a
template is pooled separately (Sec. 6.3) with the descriptors
of its individual frames weighed by this confidence. Follow-
ing this step, a video is represented as a single feature vec-
tor, no matter how many frames it originally contained. The
confidence for this single feature vector associated with the
entire video is taken as the average confidence across all the
frames in the video.

The entire template is then average-pooled (Sec. 6.3),
but by weighted averaging of the features representing any
videos and single images in the template. The result is a sin-
gle feature representation for the entire template, no matter
how many images and/or videos it originally contained.

An important consequence of this pooling scheme is
that storage and retrieval of template representations are ex-
tremely efficient, as they are both constants—independent
of the number of images, videos, or video durations the tem-
plate originally contained. Comparing two templates is also
efficient: The similarity of two templates is simply taken to
be the correlation of their two pooled features. The effects
that pooling and weighing have on recognition accuracies
are evaluated in Sec. 8.

6.5 Computational efficiency

As explained in Sec. 4.5, generating new views requires the
same computation as 2D image warping, performed rou-
tinely by standard augmentation methods (e.g., the Over-
sampling option of the Caffe framework (Jia et al, 2014)).
Sec. 6.2 explains how we pool multiple deep embeddings
generated by augmented versions of the same image. An im-
age is therefore represented using a single deep embedding,
regardless of the number of augmentations. No additional
computation is therefore required for pairwise matching of
multiple augmentations. The only overhead required when
performing online augmentation is for extracting deep em-
beddings for each augmented image. This effort equates to
one forward pass through the embedding network per aug-
mented image.

7 The COW dataset

As demonstrated by Masi et al (2016b), face-specific aug-
mentation techniques can be used as effective substitutes
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for huge training sets. In their work, they matched recog-
nition performance of systems trained on millions of images
with the system they trained using only the ∼0.5 million
images in the CASIA WebFace collection, but augmented
using their face-specific augmentation techniques.

Their results, however, do not imply that the same aug-
mentation methods cannot improve performances when far
more images are available in the seed training set. More-
over, their methods only increase intra-class variations but
not inter-class. To explore the effects of a larger seed train-
ing set, we experimented with far more training images than
the numbers used by Masi et al (2016b).

Specifically, we used a collection consisting of images
from three of the largest, publicly available face data sets—
MSCeleb, Oxford VGG Face, and CASIA-WebFace—
which we refer to collectively as our COW data set. Impor-
tantly, COW is not a simple union of the three collections.
The three collections were processed to avoid duplicate sub-
jects, test set subjects, and mislabeled images. We next de-
scribe COW and how it was assembled.

7.1 Elements of the COW face collection

The data sets which provided COW images are:

– CASIA-WebFace (Yi et al, 2014) contains ∼0.5M im-
ages of around 10K subjects. CASIA images are filtered,
cropped, and resized such that faces appear roughly
aligned for scale and translation.

– Oxford VGG Face (Parkhi et al, 2015) was downloaded
from Internet search engines and contains about 2.6M
images, varying in size and quality, of roughly 2.6K sub-
jects. It is known to contain substantial label noise and
was not manually curated as also stated by the authors.

– MS-Celeb-1M (Guo et al, 2016) has around 10M im-
ages of 100K celebrities. Each subject has 100 images
retrieved by the Bing search engine using the celebrity’s
name without filtering retrieved results. This set also
contains a lot of label noise and was not curated. In our
implementation, rather than using images provided by
MS-Celeb-1M, we downloaded the original images from
their sources. By having the original images, we were
able to process the unaligned images with their back-
grounds. Unfortunately, we found many of the links to
the sources of the images in MS-Celeb-1M to be broken.
Coupled with the steps described below, a far smaller
portion of MS-Celeb-1M is actually included in COW.

7.2 Duplicate and test subject discovery

COW images were processed as follows. First, we per-
formed string matching to find overlapping subjects in-
cluded in more than one of the original three sets. This step

is essential to ensure that images of the same subject do not
appear under multiple subject labels due to differences in
subject naming conventions used by the three collections.
To this end, for every pair of data sets, we generated a list of
candidate overlapping subjects based on string similarity of
subject names. This list was then manually filtered through
visual inspection.

We then combined image sets from data set pairs into
a single set, using a single subject label for any such du-
plicates. Importantly, the resulting set of subjects has some
overlap with the subjects in the test sets of the benchmarks
later used in our experiments (Sec. 8). Any subjects also in-
cluded in our test sets were removed from COW. Note that at
this point COW still contains a substantial number of misla-
beled images. These images are handled next.

7.3 Filtering mislabeled faces

Both MS-Celeb-1M (Guo et al, 2016) and Oxford VGG
Face (Parkhi et al, 2015) have many mislabeled images (im-
ages assigned with wrong subject names), non-face, or very
poor quality images. These mislabeled images are outliers
in the gradient-descent optimization method employed for
training our networks. Such images can slow the training or
cause convergence to bad local minima.

To mitigate this problem, we applied a simple yet ef-
fective two-step training process. First, we use the images
in this noisy COW set to train a face recognition CNN
with standard cross-entropy loss and `2 regularization on
the weights. Although noisy COW includes label noise, the
CNN was able to converge and generalize. This convergence
is not surprising as it was demonstrated in the past that
CNNs converge even when training labels are noisy, pro-
vided that the training set is dominated by inliers (Xie et al,
2016). We then use this trained network to refine COW by
removing outliers present in the training set, in an approach
similar to the one described by Liu et al (2017b).

Specifically, we used the trained network to generate
feature representations for the entire training set. We then
computed the probability of each image belonging to its as-
signed label. If this probability is smaller than threshold θ =

5e-4, then the input image is removed from the set. We se-
lected a threshold value which was slightly higher than the
random probability: 1/62K ∼2e−5. The probability thresh-
old was chosen to be conservative in the images retained in
the final set. We can afford to be conservative in light of the
large numbers of images and subjects in the combined COW
set. In fact, when a subject has less than five remaining im-
ages, the subject is altogether removed from the set.

In total we removed ∼22% of the images from the en-
tire collection. We estimate that MS-Celeb-1M contained
roughly 25-30% label noise that was filtered by our system,
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(a)

(b)

Fig. 7: The effect of filtering mislabeled images for COW. Incorrect labels are visualized by a red frame. (a) A subject with
many mislabeled images (left) which are mostly removed by our filtering process (right). (b) A subject with few mislabeled
images (left) retains most of its challenging images while still removing incorrect labels (right).

while Oxford VGGFace contained about 5% noise. Only a
handful of images were removed from the CASIA WebFace
collection, which is not surprising: CASIA is the only one
of the three that was manually curated.

A qualitative example of this noise removal process is
provided in Fig. 7. Our algorithm detected and removed sev-
eral obvious mislabeled faces. Following cleaning of non-
faces and mislabeled images, the COW collection used in
our tests contained roughly 4M images of 63K individuals.
We will release code and data files to allow others to repro-
duce our COW set.

8 Experiments

We tested our approach extensively on the recently released
IARPA Janus Benchmarks A (IJB-A) (Klare et al, 2015)
and B (IJB-B) (Whitelam et al, 2017) as well as older bench-
marks: the Labeled Faces in the Wild (LFW) (Huang et al,
2007) and YouTube Faces (YTF) (Wolf et al, 2011a). We
report state-of-the-art performances on these benchmarks at
the time of submission, as well as ablation studies measur-
ing the influence of our contributions. Finally, we also re-
port the storage and complexity gains of our face-specific



14 Iacopo Masi∗ et al.

Training data Ver. (TAR@FAR) Ide. (Rec.Rate)

0.1% 1% 10% Rank-1 Rank-5 Rank-10

VGG-19 Masi et al (2016b)
CASIA .550±.025 .750±.021 .893±.091 .778±.013 .895±.009 .926±.006
Aug. CASIA +pose .679±.054 .863±.018 .955±—– .880±.012 .947±.008 .966±.006
Aug. CASIA +pose,+shape .692±.048 .878±.015 .961±—– .889±.010 .956±.007 .971±.005

ResNet-101
COW .845±.074 .923±.022 .974±.010 .946±.009 .971±.006 .977±.004
Aug. COW +pose .906±.010 .953±.007 .982±.003 .957±.006 .977±.004 .981±.003
Aug. COW +pose,+shape .911±.010 .958±.005 .984±.002 .962±.004 .980±.003 .984±.003

Table 1: Effects of multiple poses and shapes on IJB-A,
for verification (ROC) and identification (CMC).

data augmentation layer. We note that since our paper was
submitted there has been further progress in recognition ac-
curacy and we refer to relevant papers for additional details
(Ranjan et al, 2018; Yin et al, 2018; Cao et al, 2018; Shen
et al, 2018; Crosswhite et al, 2018; Chang et al, 2019; Wen
et al, 2019; Neves and Proença, 2019; Rashedi et al, 2019).

8.1 IJB-A recognition and verification tests

IJB-A (Klare et al, 2015) is a publicly available benchmark
released by NIST2 to elevate the challenges of unconstrained
face identification and verification. Faces in IJB-A are of-
ten viewed under extreme pose, expression, and illumination
variations. Other challenges include occluded faces or faces
viewed in very poor resolution. IJB-A provides two test pro-
tocols: face verification (1:1) and face identification (1:N).
Unlike most other face recognition benchmarks, IJB-A rep-
resents subjects using templates, which contain mixtures of
still images and video frames from heterogeneous sources.

Effects of multiple poses and shapes. We start by assess-
ing what the contribution is of the different face-specific
transformations introduced in Sec. 3. The augmentation that
has the largest impact on generalization is out-of-plane ro-
tations, while rendering with different 3D face shapes pro-
duces subtle variations in the rendered images (see Fig. 3),
and contributes less to the final result.

Tab. 1 also confirms these observations for our larger
COW training set. When training the network using syn-
thetic profile views, rendered with a single fixed generic
shape, the system opens a remarkable accuracy gap com-
pared to a baseline that is trained with only 2D in-plane
aligned images. Nevertheless, the best performance is ob-
tained by also adding 3D face shape variations.

These results are consistent with those reported by Masi
et al (2016b). The improved accuracy on IJB-A with a net-
work trained on pose augmented images can be explained
when considering the distributions of yaw angles in Fig. 2:
The IJB-A benchmark has many faces in extreme, near pro-
file views. It is therefore no surprise that introducing many

2 IJB-A data and splits are available under request at http://www.
nist.gov/itl/iad/ig/facechallenges.cfm

Training data Ver. (TAR@FAR) Ide. (Rec.Rate)

0.1% 1% 10% Rank-1 Rank-5 Rank-10

VGG-19 Masi et al (2016b, 2017)
CASIA .550±.025 .750±.021 .893±.091 .778±.013 .895±.009 .926±.006
Aug. CASIA .750±.029 .888±.011 .965±.004 .925±.013 .966±.006 .974±.004

ResNet-101
Noisy COW .806±.041 .925±.011 .981±.003 .950±.008 .979±.004 .984±.005
COW .845±.074 .923±.022 .974±.010 .946±.009 .971±.006 .977±.004
Aug. Noisy COW .870±.017 .946±.009 .981±.003 .957±.006 .978±.003 .983±.002
Aug. COW .911±.010 .958±.005 .984±.002 .962±.004 .980±.003 .984±.003

Table 2: Training set ablation on IJB-A, for verification
(ROC) and identification (CMC) when using different train-
ing sets, with or without our augmentations. Note: These
results were produced with our complete pipeline, and so
should be compared with the best results of Tables 4 and 5.

Testing method Ver. (TAR@FAR) Ide. (Rec.Rate)

0.1% 1% 10% Rank-1 Rank-5 Rank-10

(i) Scale, rotation, translation, flipping
Single 2D aug. .833±.020 .919±.013 .973±.005 .939±.008 .969±.005 .976±.005
2D alignment .847±.018 .932±.012 .979±.004 .945±.008 .975±.003 .981±.003
Multiple 2D aug. .864±.016 .941±.009 .980±.004 .950±.008 .976±.004 .983±.004
2D align.+2D aug. .862±.016 .939±.010 .980±.005 .951±.007 .976±.005 .981±.004

(ii) 2D in-plane alignment
2D alignment .845±.074 .923±.022 .974±.010 .946±.009 .971±.006 .977±.004

(iii) Face-specific aug.
2D alignment .891±.024 .945±.008 .981±.003 .956±.005 .975±.004 .979±.005
2D align.+3D aug. .911±.010 .958±.005 .984±.002 .962±.004 .980±.003 .984±.003

Table 3: IJB-A results with different training and testing
augmentation methods, for verification (ROC) and identi-
fication (CMC). Different augmentation methods are tested
using the same exact COW training set.

(synthetic) profile views to the training set improves the net-
work’s ability to process such extreme viewpoints. This el-
evated accuracy also suggests that even the large COW set
has an unbalanced distribution of frontal vs. profile images.

Training set ablation studies. Results on IJB-A with dif-
ferent training sets are shown in Tab. 2. Results with aug-
mented training data were obtained using our face-specific
data augmentation layer (Sec. 5.2).

Tab. 2 clearly demonstrates the substantial impact of
our face-specific augmentation on the quality of the trained
face recognition CNN. The largest leap in performance is
gained by our augmentation technique applied to the rela-
tively small CASIA WebFace set.

The effect of our augmentation is meaningful even when
applied to the much larger COW training set, which includes
millions of training images. This improvement suggests that
even a huge image collection does not sufficiently capture
the appearance variations of the test domain. These defi-
ciencies of the original seed training set may be due to the
low numbers of images per subject (low intra-class varia-
tions; Fig. 1) or from a bias towards frontal poses (Masi et al,
2018).

An additional curious observation is that cleaning the
COW data set does not overwhelmingly improve perfor-
mance. A similar observation was made by Parkhi et al

http://www.nist.gov/itl/iad/ig/facechallenges.cfm
http://www.nist.gov/itl/iad/ig/facechallenges.cfm
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IJB-A 1:1 IJB-A 1:N

Method TAR@0.1% TAR@1% TAR@10% Rank-1 Rank-5 Rank-10

2D in-plane only
Aug. COW 0.866±0.019 0.938±0.008 0.977±0.003 0.952±0.008 0.976±0.002 0.981±0.003
Aug. COW, +ASM 0.864±0.020 0.938±0.010 0.977±0.004 0.953±0.009 0.974±0.005 0.979±0.003
Aug. COW, +ASM, +FPN 0.867±0.021 0.937±0.010 0.978±0.004 0.954±0.006 0.975±0.005 0.981±0.003
Aug. COW, +ASM, +FPN,+Pool.Con. 0.891±0.024 0.945±0.008 0.981±0.003 0.956±0.005 0.975±0.004 0.979±0.005

2D in-plane and 3D Syn.
Aug. COW, +Pool.Syn. 0.878±0.016 0.948±0.007 0.981±0.003 0.957±0.002 0.979±0.003 0.983±0.003
Aug. COW, +Pool.Syn., +ASM 0.879±0.018 0.945±0.007 0.981±0.003 0.957±0.005 0.977±0.002 0.982±0.003
Aug. COW, +Pool.Syn., +ASM, +FPN 0.888±0.019 0.953±0.006 0.983±0.003 0.961±0.005 0.979±0.004 0.983±0.003
Aug. COW, +Pool.Syn., +ASM, +FPN,+Pool.Con. 0.911±0.010 0.958±0.005 0.984±0.002 0.962±0.004 0.980±0.003 0.984±0.003

Table 4: Ablation studies on IJB-A of our method’s design. Evaluating the effect on recognition results on IJB-A of
different design choices made in developing our method. Ablations are split in two: upper part reports results using 2D
in-plane aligned images only; bottom part, the combination of 2D images and 3D synthesized.

(2015) who reported a drop in accuracy when training their
deep models after cleaning mislabeled images from their
VGGFace set.

Effects of standard data augmentation. Tab. 3 provides
results on the IJB-A set comparing different, standard aug-
mentation methods with our proposed face-specific meth-
ods. Each category reports results for a network trained with
a certain augmentation approach. The training is carried out
on the COW set and is performed on-the-fly for all methods.

In our experiments we compare the following baselines:
(1) Randomly sampling and warping the face for scale, 2D
in-plane rotation, translation and flipping, (2) aligning the
images with a 2D similarity transform, and (3) our face-
specific data augmentation. Table rows offer results compar-
ing different applications of augmentation at test time. Note
that faces were aligned at test time, regardless of the align-
ment used at training, following Schroff et al (2015); Parkhi
et al (2015) who reported the benefits of such alignment.

Fig. 8 offers a qualitative comparison of the variations
introduced by each method. Quantitative results are avail-
able in Tab. 3. These results show that networks trained with
standard data augmentation methods generalize less com-
pared to ours. This is noticeable in particular when compar-
ing only 2D alignment for different networks. Our proposed
method has a +5% improvement in the TAR at FAR=0.1%
with respect to a network trained with just in-plane align-
ment or regular 2D augmentation methods.

Ablation studies of method components. Tab. 4 examines
the effects of the different design choices in our recogni-
tion method, reporting the effects on recognition accuracy of
the following components: Training with augmented COW
(Aug. COW); the use of angular-softmax (+ASM) of Liu
et al (2017a) as the network loss function in Eq. (4) instead
of the classic softmax loss based on cross-entropy of Eq. (3),
Sec. 5.1; the impact of using FPN of Chang et al (2017)
(+FPN) as a more robust alternative to face alignment with

facial landmark detection (Sec. 4.1); and finally, pooling
across synthesized images (+Pool.Syn., see Sec. 6.2) and the
use of confidence for weighted pooling (Pool.Con.), as de-
scribed in Sec. 6.4.

The baseline without +Pool.Syn. is evaluated as follows:
the entire pipeline remains unchanged, but we avoid synthe-
sizing the images at test time with the 3D renderer. Hence,
the face recognition processes only 2D aligned images with
a similarity transform, without performing pooling across
synthetic images but performing the same video and media
pooling of Sec. 6.3.

The effect of our proposed pooling of features produced
from synthesized images (Sec. 6.2) is evident in Tab. 4
(+Pool.Syn.) and is particularly evident in the 1:1 verifica-
tion results when compared to a pipeline not using pooling
(upper part of Tab. 4). In fact, pooling appears to contribute
one of the largest performance gains. Another substantial
gain comes from the use of the landmark-free alignment
method, FPN, appearing as +FPN. This gain is noteworthy
considering that the baseline result reported by Masi et al
(2017) used a state-of-the-art facial landmark detector (Bal-
trusaitis et al, 2013). Changing the loss function appears to
have a smaller effect on results (+ASM).

Finally, low resolution images may mislead the recog-
nition process by being easier to match with other images.
Such images are referred to in the biometric menagerie
terminology of Yager and Dunstone (2010) as lambs and
wolves. Our template weighing scheme of Sec. 6.4 effec-
tively reduces their effect on recognition results; weigh-
ing the features based on face detection confidences
(+Pool.Con.) improves results compared to standard aver-
aging methods (Masi et al, 2017; Ranjan et al, 2017; Cross-
white et al, 2017), yet it is much simpler than methods which
learn feature aggregation (Yang et al, 2017).

Ablation studies of PCA and PN. Fig. 9 shows the contri-
butions of using PCA basis and the non-linear power nor-
malization (PN) operator when applied to raw CNN fea-
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Face-Specific
Data Augmentation

Random Sampling
(scale, rotation, translation)

2D in-plane
 alignment

Input

Fig. 8: Comparison between different augmentation methods. From left to right: the input image; output produced re-
spectively by warping the image by random sampling for scale, rotation and translation; with a 2D transformation; with
face-specific augmentation. Note that in this latter case, we get better aligned faces to the same coordinate system, generate
meaningful novel samples, and greatly improve out-of-plane pose variability for subjects. It is often hardest to ensure that
face training sets actually provide these variations. By comparison, 2D methods produce samples that are visually correlated
with each other, offering limited viewing variations.

tures. Performance for 1:1 verification is reported in Fig. 9a
and for 1:N close-set identification in Fig. 9b.

Linear PCA basis appears to have a minimal effect com-
pared to using the raw feature encoding extracted from the
network. In particular, TARs improve while the recognition
rate at first rank drops slightly. A larger improvement is
gained by the non-linear PN, applied after projecting the fea-
ture points with PCA. Additional improvement is obtained
by repeating power normalization after each pooling step.
Note how PCA and PN help improve both TAR at very low
FAR and the recall at first ranks.

Comparison with the state-of-the-art. We provide a com-
prehensive list of published results on IJB-A in Tab. 5. Our
results (also appearing in Tab. 4) outperform published state-
of-the-art results at the time our paper was submitted, in-
cluding, in particular, the results reported by Wang et al
(2015) using seven deep networks, with a commercial sys-
tem used to fuse their outputs.

It is interesting to compare our results to those reported
by Chen et al (2016) and Sankaranarayanan et al (2016b).
Both of these previous methods fine-tuned their deep net-
works on the ten training splits of IJB-A in order to better
adjust to the test set domain, but at a substantial computa-
tional cost. We believe that by training our networks with
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Fig. 9: Ablation studies for PCA and PN. (a) ROC curves
for 1:1 IJB-A Verification; (b) CMC curves for 1:N close-set
identification. See text for more details.

augmented training data we avoid having to similarly spe-
cialize our networks to the test data. Compared to methods
which, unlike ours, did not tune networks on the target set,
our method reached an even greater performance margin.

Recently, a method very similar to ours was proposed
by Zhao et al (2017). Their approach also augmented for
pose, adding refinement of the synthetic images using an
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adversarial loss. They report state-of-the-art performance on
IJB-A, though their approach is also trained on IJB-A train-
ing splits. Furthermore, unlike our method, their method
cannot be used for on-the-fly data augmentation due to com-
putational constraints.

8.2 IJB-B recognition and verification tests

IJB-B (Whitelam et al, 2017) is a newly released bench-
mark that extends IJB-A by providing additional subjects
and more challenging viewing conditions. Compared to IJB-
A, IJB-B consists of 1,845 individuals for a total of 21,798
still images and 55,026 frames, extracted from about 7K
videos. Unlike IJB-A, IJB-B does not offer training splits.
We therefore compute our PCA basis on a held-out set of
our COW training set (see Sec. 6.1). Thus, even unsuper-
vised feature specialization is not permitted on IJB-B.

Tab. 6 provides an ablation study of the proposed sys-
tem on IJB-B and should be compared with the similar study
performed on IJB-A and reported in Tab. 4. Ablation results
on IJB-B follow the same pattern as those reported for IJB-
A, supporting the design choices made in developing our
approach. Tab. 7 additionally provides a comparison with
the published results on IJB-B. Because IJB-B was only re-
cently released, far fewer baseline results are available. Im-
portantly, despite being far larger and more challenging than
IJB-A, our results on this set remain quite high (e.g., recog-
nition rate at rank-1 is higher than 90%).

8.3 LFW verification tests

LFW (Huang et al, 2007) has been the de facto standard for
measuring face recognition performances for a decade now.
To test our approach, we follow the standard protocol for
unrestricted, labeled outside data and report the mean clas-
sification accuracy as well as the 100% - equal error rate
(EER). We prefer to use 100% - EER in general because it
is independent of a classification threshold. We report veri-
fication accuracy for comparison with previous methods.

Fig. 10a provides ROC curves for our two face-specific
augmentation techniques. The green dashed curve repre-
sents our baseline—the CNN trained on 2D in-plane aligned
images. The ROC improves considerably when training also
includes our generated novel views and 3D shapes. Indeed,
the 100% - EER improves by +1.67%. By adding 3D face
shape augmentation, performance improves even further,
reaching a 100% - EER rate of 98.00% (red dashed curve).

When COW is used as the seed training set, augmen-
tation provides only a slight improvement (see green solid
curve vs. red solid curve). This limited contribution is partly
due to LFW containing faces which are mostly near-frontal,

and so rendering to extreme poses is less necessary. Never-
theless, augmentation does improve, suggesting that its con-
tribution goes beyond introducing pose variations. More im-
portantly, however, results reported for COW without aug-
mentation are already near-perfect, and so augmentation has
very little room for improvement.

Finally, a comparison of our results on LFW to those
reported by methods trained on millions of images (Taigman
et al, 2014, 2015; Parkhi et al, 2015; Schroff et al, 2015)
shows that with the initial set of less than 500K publicly
available images (Yi et al, 2014), our method surpasses those
of Taigman et al (2014) and Parkhi et al (2015) (without their
metric learning, which was not applied here). Our method
and the state-of-the-art achieve error rates smaller than 1%.
FaceNet (Schroff et al, 2015), in particular, obtains a slightly
higher performance than we do. The small gain in accuracy
reported by FaceNet comes at the price of using a private
collection of 200 million labeled face images.

8.4 YTF face video verification results

Along with LFW, YTF (Wolf et al, 2011a) is one of the
more popular face verification benchmarks. YTF contains
face videos, rather than images or templates, and uses a
1:1 verification test protocol similar to LFW. It provides ten
splits, each with 500 video pairs to be compared (250 same,
250 not-same). Results are reported as the average accuracy
across all splits.

Tab. 8 lists previously published results on YTF. To our
knowledge, state-of-the-art performance on YTF at the time
of submission was reported by Parkhi et al (2015) using a
single CNN trained on the 2.6M images of the VGG Face
set and then improved by supervised triplet-loss embedding
on the YTF training splits. All other methods, including our
own, did not perform supervised training on YTF videos,
which would explain why no result since has reported the
same performance. Without this metric, learning their ap-
proach obtained a far lower accuracy of 91.6%. This drop in
performance emphasizes the importance of supervised train-
ing on the target domain. We include this result in Tab. 8 for
completeness, despite its use of additional information com-
pared to all other methods.

Without use of YTF training data and labels, our method
outperforms all other previously reported results. This in-
cludes the very recent approach of Yang et al (2017),
which was explicitly designed for video-based face recog-
nition (Kim et al, 2018) but uses different frame pooling
techniques than we do.
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IJB-A 1:1 IJB-A 1:N

Method TAR@0.1% TAR@1% TAR@10% Rank-1 Rank-5 Rank-10
OpenBR (Klontz et al, 2013) 0.104±—— 0.236±—— – 0.246±—— 0.375±—— –
LSFS (Wang et al, 2015) 0.514±0.060 0.733±0.034 0.895±0.013 0.820±0.024 0.929±0.013 –
GOTS (Klare et al, 2015) 0.198±—— 0.406±—— – 0.443±—— 0.595±—— –
VGG-Face (Parkhi et al, 2015) – 0.805±0.030 – 0.913±0.011 – 0.981±0.005
DCNN +fusion (Chen et al, 2016) – 0.838±0.042 0.967±0.009 0.903±0.012 0.965±0.008 0.977±0.007
B-CNN (Chowdhury et al, 2016) – – – 0.588±0.020 0.796±0.017 –
Triplet Embedding (Sankaranarayanan et al, 2016a) 0.813±0.02 0.900±0.010 0.964±0.005 0.932±0.01 – 0.977±0.005
Pooling faces (Hassner et al, 2016) – 0.309±—— 0.631±—— 0.846±—— 0.933±—— 0.951±——
Deep Multi-Pose (AbdAlmageed et al, 2016) – 0.787±—— 0.911±—— 0.846±—— 0.927±—— 0.947±——
Pose-Aware Models (Masi et al, 2016a) 0.652±0.037 0.826±0.018 – 0.840±0.012 0.925±0.008 0.946±0.007
Aug. (Masi et al, 2016b) 0.725±—— 0.886±—— – 0.906±—— 0.962±—— 0.977±——
Aug. Pose, Light (Crispell et al, 2016) – – – 0.915±0.012 0.968±0.006 0.980±0.004
Aug. Pose, Light +temp. adapt. (Crispell et al, 2016)* – – – 0.944±0.009 0.981±0.005 0.989±0.003
3DMM-CNN (Tran et al, 2017) – 0.600±0.056 0.870±0.015 0.762±0.018 0.897±0.01 0.929±0.01
Rapid Synthesis (Masi et al, 2017) 0.750±0.029 0.888±0.011 0.965±0.004 0.925±0.013 0.966±0.007 0.974±0.005
All-in-one (Ranjan et al, 2017) 0.823±0.02 0.922±0.010 0.976±0.004 0.947±0.008 – 0.988±0.003
VGG-Face +temp. adapt. (Crosswhite et al, 2017)* 0.836±0.027 0.939±0.013 0.979±0.004 0.928±0.010 0.977±0.004 0.986±0.003
Investigating Nuisance Factors (Ferrari et al, 2017) 0.759±0.041 0.896±0.016 – 0.910±0.014 – 0.983±0.003
FPN (Chang et al, 2017) 0.852±—— 0.901±—— – 0.914±—— 0.930±—— 0.938±——
NAN (Yang et al, 2017) 0.860±0.012 0.933±0.009 0.979±0.004 0.954±0.007 0.978±0.004 0.984±0.003
NAN +media-pool (Yang et al, 2017) 0.881±0.011 0.941±0.008 0.978±0.003 0.958±0.005 0.980±0.005 0.986±0.003

DCNN +metric (Chen et al, 2015) (f.t.) – 0.787±0.043 0.947±0.011 0.852±0.018 0.937±0.010 0.954±0.007
Triplet Similarity (Sankaranarayanan et al, 2016b) (f.t.) 0.590±0.050 0.790±0.030 0.945±0.002 0.880±0.015 0.950±0.007 0.974±0.005
DA-GAN Zhao et al (2017) (f.t.) 0.930±0.005 0.976±0.007 0.991±0.003 0.971±0.007 0.989±0.003 –

Us 0.911±0.010 0.958±0.005 0.984±0.002 0.962±0.004 0.980±0.003 0.984±0.003

Table 5: State-of-the-art performances on IJB-A. Comparing previously published verification (ROC) and identification
(CMC) results at different cut-off points of the evaluation metrics with our own performance. Our method surpasses previous
state-of-the-art at the time of submission, with wide margins. Note: f.t. denotes fine-tuning a deep network for each training
split. A network trained once with our augmented data achieves results on par, without this effort.∗ Methods denoted with
+temp. adapt. used a computationally expensive approach to matching, which may not scale well to large data sets.

IJB-B 1:1 IJB-B 1:N

Method TAR@0.1% TAR@1% TAR@10% Rank-1 Rank-5 Rank-10
Aug. COW 0.885 0.959 0.990 0.883 0.942 0.958
Aug. COW +Pool.Syn. 0.899 0.963 0.990 0.895 0.948 0.963
Aug. COW, +Pool.Syn., +ASM 0.900 0.959 0.989 0.895 0.945 0.958
Aug. COW, +Pool.Syn., +ASM, +FPN 0.909 0.962 0.990 0.904 0.950 0.961
Aug. COW, +Pool.Syn., +ASM, +FPN,+Pool.Con. 0.920 0.966 0.991 0.916 0.956 0.967

Table 6: Ablation studies on IJB-B of our method’s design. Evaluating the effect on recognition results on IJB-B of
different design choices made in developing our method. See text for further details. Note that IJB-B, unlike IJB-A, only has
one test split. Unlike Tab. 4, results are therefore reported here without ± standard deviations.

8.5 Rendering speed, storage, and convergence analysis

Rendering speed. We compare the rendering of runtimes
required by our approach with the existing face render-
ing techniques of Hassner et al (2015); Masi et al (2016b,
2013, 2016a). Runtimes for all methods were measured
on an Intel Core i7-4820K CPU @ 3.70GHz (4 cores),
32GB RAM and nVidia Titan X GPU. In addition to run-
times, we report other relevant aspects of these rendering
systems: their support of rendering multiple poses (rather
than, e.g., only frontalization); use of multiple 3D shapes;
implementation programming language; dependency on
OpenGL; and finally, public availability.

For a fair comparison, we measure the average time
(Avg. Rend. Time) required by each method for rendering
alone; time required for pose estimation (and/or landmark
detection) was excluded, although we note that the FPN used
in our system is much faster than pose estimation based on
facial landmark detection performed by others. Speeds were
measured averaging over 2,000 rendered views.

Our report is summarized in Tab. 9. Our method, despite
being implemented using high-level, unoptimized Python
code, can generate a rendered view in 14.27ms. The recent
method of Masi et al (2016b), which uses optimized and
compiled OpenGL code, requires more time (46.12ms) due
to the repeated ray casting it performs—which we instead



Face-Specific Data Augmentation for Unconstrained Face Recognition 19

0 0.02 0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1

False Acceptance Rate

T
ru

e 
A

cc
ep

ta
n

ce
 R

at
e

ROC curves for LFW dataset

 

 

(CASIA) No Augmentation

(CASIA) Face Specific Aug.

(Noisy COW) No Augmentation

(Aug. COW)  Face Specific Aug.

(a) Ablation Study

Method Real Synth Net Acc. (%) 100% - EER

Fisher Vector Faces (Parkhi et al, 2014) – – – 93.00±— 93.10±—
DeepFace (Taigman et al, 2014) 4M – 3 97.35±— –
Fusion (Taigman et al, 2015) 500M – 5 98.37±— –
FaceNet (Schroff et al, 2015) 200M – 1 98.87±— –
FaceNet +alignment (Schroff et al, 2015) 200M – 1 99.63±— –
VGG Face (Parkhi et al, 2015) 2.6M – 1 – 97.27±—
VGG Face +triplet (Parkhi et al, 2015) 2.6M – 1 98.95±— 99.13±— *

VGG-19 Masi et al (2016b)
Us, (CASIA) no aug. 495K – 1 95.31±0.84 95.26±0.97
Us, (CASIA) aug. pose 495K 2M 1 97.01±0.57 96.93±0.79
Us, (CASIA) aug. pose, shape 495K 2.4M 1 98.06±0.59 98.00±0.60

ResNet-101
Us, (Noisy COW) no aug. 5.2M – 1 98.80±0.63 98.80±0.68
Us, (Aug. COW) pose, shape, qual. 4M 18.6M 1 99.07±0.44 99.00±0.52

(b) Results for methods trained on millions of images

Fig. 10: LFW verification results. (a) Break-down of the influence of different training data augmentation methods. (b)
Performance comparison with state-of-the-art methods, showing the numbers of real (original) and synthesized training
images, number of CNNs used by each system, accuracy and 100%-EER. * The only system which performed supervised
training on LFW data and labels.

IJB-B 1:1 (TAR@FAR) IJB-B 1:N (Rec. Rate)

Method 0.1% 1% 10% R1 R5 R10

Whitelam et al (2017) 0.33 0.60 0.78 0.42 0.57 0.62
Whitelam et al (2017) 0.72 0.860 0.94 0.78 0.86 0.89
Chang et al (2017) 0.916 0.965 – 0.911 0.953 0.965

Us 0.920 0.966 0.991 0.916 0.956 0.967

Table 7: State-of-the-art performances on IJB-B. Com-
paring previously published verification (ROC) and identifi-
cation (CMC) results at different cutoff points of the evalu-
ation metrics with our own performance. Our method sur-
passes previous state-of-the-art at the time of submission
with wide margins.

Method Accuracy (%) AUC (%)

LM3L (Hu et al, 2014b) 81.3±1.2 89.3±—
DDML (combined) (Hu et al, 2014a) 82.3±1.5 90.1±—
EigenPEP (Li et al, 2014) 84.8±1.4 92.6±—
DeepFace-single (Taigman et al, 2014) 91.4±1.1 96.3±—
DeepID2+ (Sun et al, 2014c) 93.2±0.2 –
FaceNet (Schroff et al, 2015) 95.1±0.4 –
VGG-Face (Parkhi et al, 2015) 91.6±— –
VGG-Face +triplet (Parkhi et al, 2015) 97.3±— * –
Center Loss (Wen et al, 2016) 94.9±— –
3DMM-CNN (Tran et al, 2017) 88.80±2.21 95.37±1.43
NAN (Yang et al, 2017) 95.72±0.64 98.8±—

Us 95.86±1.07 97.8±1.17

Table 8: State-of-the-art performance evaluation on
YTF. Comparing previously published verification perfor-
mance.* This is the only system which performed super-
vised training on YTF data and labels.

perform only once at preprocessing. Overall, our method has
a speed-up of about ×3.7.

To appreciate the significance of this, it is possible to
synthesize novel views using multiple 3D shapes simultane-

ously while training the CNN, following Sec. 5.2, without
any significant training time overhead. In addition, render-
ing on-the-fly also provides a non-negligible boost in terms
of space complexity.

Storage requirements. The entire COW dataset stored with
JPG compression requires around 150GB of disk space.
Applying many (possibly infinite) augmentations to such a
huge image collection could easily inflate this size to unre-
alistic storage requirements if all the synthetically produced
images were saved on the disk. In general, the saving in stor-
age complexity is proportional to the number of augmenta-
tions performed. Using our augmentation methods, saving
is about ×4.5. Note that some overhead is still required for
storing additional metadata information (precomputed 3D
poses). We found that the metadata stored on the disk re-
quires less than 10% of the original COW size.

Training convergence analysis. We study the convergence
of training a baseline model with in-plane aligned images
with / without face-specific data augmentation. These two
experiments are performed on the CASIA WebFace set (Yi
et al, 2014), and, more importantly, aside from the use of
data augmentation, use identical settings during training.

Fig. 11b shows that by synthesizing more novel samples,
our training takes more time to converge: there is a differ-
ence of about twenty epochs between the baseline and our
model until the validation plateaus. Note that our training
converges to a higher loss value compared to the baseline
method (Fig. 11a). This translates into less overfitting and
better generalization, as evident from Fig. 11b. Although the
baseline model is quicker to fit to the training data, it leads
to a wider gap between training and validation. This gap is
reduced when training using face-specific augmentation.
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Method Avg. Rend. Time (ms) Multi-Pose Multi-Shape Implement. Avoid OpenGL Pub. Aval.

Masi et al (2013) – Yes No Blender No No
Hassner et al (2015) 66.33±09.51 No No MATLAB Yes Yes
Masi et al (2016a) 46.12±18.45 Yes No Optimized C++ No No
Masi et al (2016b) 46.12±18.45 Yes Yes Optimized C++ No No

Our renderer 14.27±01.98 Yes Yes Python Yes Yes

Table 9: Face rendering comparison. Overview of runtimes and other properties of recent face rendering techniques.
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Fig. 11: Model convergence analysis. (a) Convergence of the Soft-Max cross-entropy loss function for the baseline and
for the model trained with face-specific augmentation. (b) Top-1 error rate for both training and validation sets for the base
model and for the face-specific data augmented model.

8.6 Results summary

The results throughout this section clearly show that syn-
thesizing training images using domain tools and knowl-
edge leads to a dramatic increase in recognition accuracy.
This may be attributed to the potential of domain-specific
augmentation to infuse training data with important intra-
subject appearance variations—the very variations that seem
hardest to obtain by simply downloading more images. As
a bonus, it is a more accessible means of increasing training
set sizes than downloading and labeling millions of addi-
tional faces. A final plus is that synthesizing complex 3D
transformation can be done seamlessly while training, with-
out requiring storage for synthetically generated image vari-
ations. The benefits of this augmentation are also evident at
test time, where pooled representations of synthesized im-
ages appear significantly better than the single descriptors
of the original images.

9 Conclusions

This paper makes several important contributions. First, we
show how domain-specific data augmentation can be used
to efficiently generate (synthesize) valuable additional data,
on-the-fly, to train effective face recognition systems, as an

alternative to expensive data collection and labeling. Sec-
ond, we describe a face recognition pipeline with several
novel details. In particular, one of those novel details is
our pipeline’s use of the very same face-specific data aug-
mentation techniques as a means of obtaining more robust
face representations which reduce the effects of appear-
ance nuisances. Finally, our extensive analysis shows that
although there is certainly a benefit to downloading increas-
ingly larger training sets (see the proposed COW set), much
of this effort can be substituted by simply synthesizing more
face images and automatically removing mislabeled training
samples.

There are several compelling directions for extending
this work. Primarily, the underlying idea of domain-specific
data augmentation can be extended in more ways (more fa-
cial transformations) to provide additional intra-subject ap-
pearance variations. Appealing potential augmentation tech-
niques, not used here, are occlusions (Nirkin et al, 2018),
facial age synthesis (Kemelmacher-Shlizerman et al, 2014),
facial hair manipulations (Nguyen et al, 2008), facial de-
tails (Tran et al, 2018), or expressions (Chang et al, 2018).
Finally, beyond faces, there may be other domains where
such an approach is relevant and where the introduction of
synthetically generated training data can help mitigate the
many problems of data collection for CNN training.
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A Preparing generic 3D heads and backgrounds

When rendering novel views of faces, similarly to Masi et al (2016b),
we use ten generic 3D face shapes S = {S1, ...,S10} from the Basel
Face Set (Paysan et al, 2009) to model head shape variations. These
3D faces are all aligned with each other and so can easily be manip-
ulated and segmented: Only one shape needs to be manipulated and
any modifications to this shape can easily be transfered to all others.
Thus, selecting the 3D eye regions in these models to avoid cross-eyed
results (Hassner et al, 2015) only needs to be done once.

Fig. 12: Preparing generic 3D models. Head added to a
generic 3D face along with two planes for background.

These models only represent the facial region of the head. Masi
et al (2016b) therefore rendered only partial head views, without back-
grounds, and this is presumably why Taigman et al (2014) and Hassner
et al (2015) only used tight bounding boxes around the face center.

To allow rendering of the entire head and background, we leverage
the alignment of these heads to modify them by completing the head
shapes and adding a background plane. This is performed by stitching
the ten 3D models to an additional, generic 3D structure containing
head, ears, and neck and adding a plane representing a flat background.

The process of combining 3D faces to 3D heads is described in
Fig. 12. We use the generic 3D head of Zhu et al (2016). We remove its
facial region and exchange it with the 3D faces of Paysan et al (2009).
To allow blending with different 3D faces (e.g., Fig. 12(a)), varying
in sizes and shapes, we maintain an overlap belt with radius r = 2cm
(Fig. 12(b)). Given an input 3D face (Fig. 12(a)), we merge it onto the
head model using soft boundary blending. We first detect points on the
overlap region of the face model. Each point X is then assigned a soft
blending weight w:

w =
1
2
− 1

2
cos

(
πd
r

)
, (5)

where d is the distance to the boundary. Next, X is adjusted to the new
3D position X′ by:

X′ = wX+(1−w)PX , (6)

where PX is the closest 3D point from the head. The result is a complete
3D face model (Fig. 12(c)). Ostensibly, an alternative to this method
would be to scan new models, with complete 3D heads. Besides re-
quiring less labor for scanning and alignment, the method described
above was selected in order to minimize the differences between our
recognition system and the one used by Masi et al (2016b), including
the use of the same 3D face shapes from in their system.

To additionally preserve the background, we simply add two
planes to the 3D model: one positioned just behind the head and an-
other, perpendicular plane, on its right. This second plane is used to
represent the background when the input face is rendered to a profile
view, in which case the first plane is mapped to a line. Fig. 12(d) shows
the models we produced using one of the 3D face shapes of Paysan
et al (2009). Fig. 12(e) shows the rendered view of this generic face
from the profile pose used by our system.

B Fast 3D rendering snippet code

Given an input image I containing a face in unconstrained settings, we
use the following simple procedure to render it to a desired new view
using U. The code in Fig. 13 for a Python code example explains the
process.

http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
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import numpy as np

import cv2

U_bar = np.vstack((U, \

np.ones((1, threedee.shape[1]))))

q_bar = MI * U_hat

q = np.divide(q_bar[0:2, :], \

np.tile(q_bar[2, :], (2,1)))

#idx are indices of q inside the image

q=q[idx]

synth = warpImg(I, N, M, q, idx)

def warpImg(I, N, M, q, idx):

J = np.zeros((N*M, 3))

#fast warping

pixels = cv2.remap(I, \

np.asarray( q[0,:] ).astype('float32'),\

np.asarray( q[1,:] ).astype('float32'),\

cv2.INTER_LINEAR)

#copy the interpolated pixel back ( Eq. (1) )

J[idx,:] = pixels

J = J.reshape(( N, M, 3), order='F')

J = J.astype('uint8')

return J

Fig. 13: Python code snippet for 3D rendering at 2D im-
age warping speed.


