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Abstract. Face recognition capabilities have recently made extraordi-
nary leaps. Though this progress is at least partially due to ballooning
training set sizes – huge numbers of face images downloaded and labeled
for identity – it is not clear if the formidable task of collecting so many
images is truly necessary. We propose a far more accessible means of in-
creasing training data sizes for face recognition systems: Domain specific
data augmentation. We describe novel methods of enriching an existing
dataset with important facial appearance variations by manipulating the
faces it contains. This synthesis is also used when matching query im-
ages represented by standard convolutional neural networks. The effect
of training and testing with synthesized images is tested on the LFW and
IJB-A (verification and identification) benchmarks and Janus CS2. The
performances obtained by our approach match state of the art results
reported by systems trained on millions of downloaded images.

1 Introduction

The recent impact of deep Convolutional Neural Network (CNN) based methods
on machine face recognition capabilities has been extraordinary. The conditions
under which faces are now recognized and the numbers of faces which systems
can now learn to identify improved to the point where some consider machines
to be better than humans at this task. This progress is partially due to the intro-
duction of new and improved network designs. However, alongside developments
in network architectures, it is also the underlying ability of CNNs to learn from
massive training sets that allows these techniques to be so effective.

Realizing that effective CNNs can be made even more effective by increasing
their training data, many began focusing efforts on harvesting and labeling large
image collections to better train their networks. In [39], a standard CNN was
trained by Facebook using 4.4 million labeled faces and shown to achieve what
was, at the time, state of the art performance on the Labeled Faces in the
Wild (LFW) benchmark [13]. Later, [28] proposed the VGG-Face representation,

* Denotes equal contribution.
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Dataset #ID #Img #Img/#ID

CASIA [46] 10,575 494,414 46

Facebook DeepFace [39] 4,030 4.4M 1K
Google FaceNet [33] 8M 200M 25
VGG Face [28] 2,622 2.6M 1K
Facebook Fusion [40] 500M 10M 50
MegaFace [14] 690,572 1.02M 1.5

Aug. pose+shape 10,575 1,977,656 187
Aug. pose+shape+expr 10,575 2,472,070 234

(a) Face set statistics
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Fig. 1: (a) Comparison of our augmented dataset with other face datasets along with
the average number of images per subject. (b) Our improvement by augmentation
(Aug.) in the distribution of per-subject image numbers in order to avoid the long-tail
effect of the CASIA set [46] (also shown in the last two rows of (a)).

trained on 2.6 million faces, and Face++ proposed its Megvii System [47], trained
on 5 million faces. All, however, pale in comparison to the Google FaceNet [33]
which used 200 million labeled faces for its training.

Making CNNs better by collecting and labeling huge training sets is unfor-
tunately not easy. The effort required to download, process and label millions
of Internet images with reliable subject names is daunting. To emphasize this,
the bigger sets, [39,40] and [33], required the efforts of affluent commercial orga-
nizations to assemble (Facebook and Google, resp.) and none of these sets was
publicly released by its owners. By comparison, the largest publicly available face
recognition training set is CASIA WebFaces [46] weighing in at a mere 495K im-
ages, several orders of magnitudes smaller than the two bigger commercial sets1.

But downloading and labeling so many faces is more than just financially
hard. Fig. 1a provides some statistics for the larger face sets. Evidently, set
sizes increase far faster than per-subject image numbers. This may imply that
finding many images verified as belonging to the same subjects is hard even
when resources are abundant. Regardless of the reason, this is a serious prob-
lem: recognition systems must learn to model not just inter-class appearance
variations (differences between different people) but also intra-class variations
(same person appearance variations) and this appears to remain a challenge for
data collection efforts.

In light of these challenges, it is natural to ask: is there no alternative to this
labor intensive, data harvesting and labeling approach to pushing recognition
performances? Beyond mitigating the challenges of data collection, this ques-
tion touches a more fundamental issue. Namely, can CNNs benefit from domain
specific image preprocessing, and if so, how?

To answer this, we make the following contributions. (1) We propose synthe-
sizing data in addition to collecting it. We inflate the size of an existing training
set, the CASIA WebFace collection [46], to several times its size using domain

1 MegaFace [14] is larger than CASIA, but was designed as a testing set and so provides
few images per subject. It was consequently never used for training CNN systems.
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(face) specific image synthesis methods (Fig. 1b). We generate images which
introduce new intra-class facial appearance variations, including pose (Sec. 3.1),
shape (Sec. 3.2) and expression (Sec. 3.3). (2) We describe a novel matching
pipeline which uses similar synthesis methods at test time when processing
query images. Finally, (3), we test our approach on the LFW [13], IJB-A (ver-
ification and identification) and CS2 benchmarks [16]. Our results show that a
CNN trained using these generated faces matches state of the art performances
reported by systems trained on millions of manually downloaded and labeled
faces2.

Our approach can be considered a novel face data augmentation method
(Sec. 2): Domain specific data augmentation. Curiously, despite the success of
existing generic augmentation methods, we are unaware of previous reports of
applying this easily accessible approach to generate new training face images, or
indeed training for any other image class.

2 Related work

Face recognition: Face recognition is one of the central problems in computer
vision and, as such, the relevant work is extensive. Face recognition performances
greatly improved with the recent introduction of deep learning techniques and
in particular CNNs. Though CNNs have been used for face recognition as far
back as [19], only when massive amounts of data became available did they
achieve state of the art performance. This was originally shown by the Facebook
DeepFace system [39], which used an architecture very similar to [19], but with
over 4 million images used for training they obtained better results.

Since then, CNN based recognition systems continuously cross performance
barriers with some notable examples including the Deep-ID 1-3 systems [38,36,37].
They and many others since, developed and trained their systems using far fewer
training images, at the cost of somewhat more elaborate network architectures.

Though novel network designs can lead to better performance, further im-
provement can be achieved by collecting more training data. This was shown
by Google FaceNet [33], which was trained on 200 million images. Besides im-
proving results, they offered an analysis of the consequences of using more data:
apparently, there is a significant diminishing returns effect when training with in-
creasing image numbers. Thus, the performance gained by going from thousands
of images to millions is substantial but increasing the numbers further provides
smaller and smaller benefits. One way to explain this is that the data they used
suffers from a long tail phenomenon [46], where most subjects in these sets have
very few images for the network to learn intra-subject appearance variations.

These methods were evaluated on LFW, a standard de facto for measuring
face recognition performances. Many recent LFW results, however, are reach-
ing near-perfect performances, suggesting that LFW is no longer a challenging
benchmark for today’s systems. Another relevant and popular benchmark is the

2 See www.openu.ac.il/home/hassner/projects/augmented_faces.

www.openu.ac.il/home/hassner/projects/augmented_faces
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YouTube Faces (YTF) set [42]. It contains unconstrained face videos rather than
images, but it too is quickly being saturated. Recently, a new benchmark was
released, again aiming to push machine face recognition capabilities: the Janus
set [16]. Its design offers several novelties compared to existing sets, including
template based, rather than image based, recognition and a mix of both im-
ages and videos. It is also tougher than previous collections. Not surprisingly,
dominating performance on Janus are CNN methods such as [5].
Data augmentation: Data augmentation techniques are transformations ap-
plied to training or testing images, without altering their labels. Such methods
are well known to improve CNN performances and avoid overfitting [3]. Popular
augmentation methods include simple, geometric transformations such as over-
sampling (multiple, translated versions of the input image obtained by cropping
at different offsets) [18,20], mirroring (horizontal flipping) [3,44], rotating [43]
the images as well as various photometric transformations [18,34,7].

Surprisingly, despite being widely recognized as highly beneficial to the train-
ing of CNN systems, we are unaware of previous attempts to go beyond these
generic image processing transformations as described here. One notable excep-
tion is the recent work of [25] which proposes to augment training data for a
person re-identification network by replacing image backgrounds. We propose a
far more elaborate, yet easily accessible means of data augmentation.
Face synthesis for face recognition: The idea that face images can be syn-
thetically generated in order to aid face recognition is not new. To our knowledge,
it was originally proposed in [10] and then effectively used by [39,11,23,8]. Con-
trary to us, they all produced frontal faces which are presumably better aligned
and easier to compare. They did not use other transformations to generate new
images (e.g., other poses, facial expressions). More importantly, their images
were used to reduce appearance variability, whereas we propose the opposite: to
dramatically increase it to improve training and testing.

3 Domain specific data augmentation for face images

We next detail our approach to augmenting a generic face dataset. We use the
CASIA WebFace collection [46], enriching it with far greater per-subject appear-
ance variations, without changing existing subject labels or losing meaningful
information. Specifically, we propose to generate (synthesize) new face images,
by introducing the following face specific appearance variations:

1. Pose: Simulating face image appearances across unseen 3D viewpoints.
2. Shape: Producing facial appearances using different 3D generic face shapes.
3. Expression: Specifically, simulating closed mouth expressions.

As previously mentioned, (1) can be considered an extension of frontalization
techniques [11] to multiple views. Conceptually, however, they rendered new
views to reduce variability for better alignment whereas we do this to increase
variability and better capture intra-subject appearance variations. Also notewor-
thy is that (2) explicitly contradicts previous assumptions on the importance of
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Fig. 2: Adding pose variations by synthesizing novel viewpoints. Left: Original image,
detected landmarks, and 3D pose estimation. Right: rendered novel views.

3D facial shape in recognizing faces (e.g., [39]): Contrary to their claim that
shape carries important subject related information we ignore shape cues by
rendering the same face using different underlying shapes. As we later show,
this introduces subtle appearance variations at training without changing per-
ceived identities.

3.1 Pose variations

In order to generate unseen viewpoints given a face image I, we use a technique
similar to the frontalization proposed by [11]. We begin by applying the facial
landmark detector from [2]. Given these detected landmarks we estimate the
six degrees of freedom pose for the face in I using correspondences between the
detected landmarks pi ∈ R2 and points Pi

.
= S(i) ∈ R3, labeled on a 3D generic

face model S. Here, i indexes specific facial landmarks in I and the 3D shape S.
As mentioned earlier, we use CASIA faces for augmentation. These faces

are roughly centered in their images, and so detecting face bounding boxes was
unnecessary. Instead, we used a fixed bounding box determined once beforehand.

Given the corresponding landmarks pi ↔ Pi we use PnP [9] to estimate
extrinsic camera parameters, assuming the principal point is in the image center
and then refining the focal length by minimizing landmark re-projection errors.
This process gives us a perspective camera model mapping the generic 3D shape
S on the image such as pi ∼M Pi where M = K [R t] is the camera matrix.

Given the estimated pose M, we decompose it to obtain a rotation matrix
R ∈ R3×3 containing rotation angles for the 3D head shape with respect to
the image. We then create new rotation matrices R′θ ∈ R3×3 for unseen (novel)
viewpoints by sampling different yaw angles θ. In particular, since CASIA images
are biased towards frontal faces, given an image I we render it at the fixed yaw
values θ = {0◦,±40◦,±75◦}. Rendering itself is derived from [11], including soft-
symmetry. Fig. 2 shows viewpoint (pose) synthesis results for a training subject
in CASIA, illustrating the 3D pose estimation process.

Note that in practice, faces are rendered with a uniform black background not
shown here (original background from the image was not preserved in rendering).

3.2 3D shape variations

In the past, some argued that to truthfully capture the appearance of a sub-
ject’s face under different viewpoints, its actual 3D shape must be used. They
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Fig. 3: Top: The ten generic 3D face shapes used for rendering. Bottom: Faces rendered
with the generic appearing right above them. Different shapes induce subtle appearance
variations yet do not change the perceived identity of the face in the image.

therefore attempted to estimate 3D face shapes directly from query images prior
to frontalization [39]. Because this reconstruction process is unstable, particu-
larly for challenging, unconstrained images, Hassner et al. [11] instead used a
single generic 3D face to frontalize all faces. We propose the following simple
compromise between these two approaches.

Rather than using a single generic 3D shape or estimating it from the image
directly, we extend the procedure described in Sec. 3.1 to multiple generic 3D
faces. In particular we add the set of generic 3D shapes S = {Sj}10j=1. We then
simply repeat the pose synthesis procedure with these ten shapes rather than
using only a single one.

We used generic 3D faces from the publicly available Basel set [29]. It pro-
vides ten high quality 3D face scans of different people representing different
genders, ages, and weights. These scans are well aligned to one another. Hence,
3D landmarks need only be selected once, on one of these scans, and then di-
rectly transferred to the other nine. Fig. 3 shows these ten generic models, along
with images rendered to near profile view using each shape. Clearly, subjects
in these images remain identifiable, despite the different underlying 3D shape,
meeting the augmentation requirement of not changing subject labels. Yet each
image is slightly but noticeably different from the rest, introducing appearance
variations to this subject’s image set.

3.3 Expression variations

In addition to pose and shape, we also synthesize expression variations, specif-
ically reducing deformations around the mouth. Given a face image I and its
2D detected landmarks pi, and following pose estimation (Sec. 3.1) we estimate
facial expression by fitting a 3D expression Blendshape, similarly to [21]. This is
a linear combination of 3D generic face models with various basis expressions,
including mouth-closed, mouth-opened and smile. Following alignment of the 3D
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Fig. 4: Expression synthesis examples. Top: Example face images from the CASIA
WebFace dataset. Bottom: Synthesized images with closed mouths.

face model and the 2D face image in both pose and expression, we perform
image-based texture mapping to register the face texture onto the model. This
is useful to quickly assign texture to our face model given that only one image is
available. To synthesize expression, we manipulate the 3D textured face model to
exhibit new expressions and render it back to the original image. This technique
allows us to render a normalized expression where other image details, including
hair and background, remain unchanged. In our experiments we do this to pro-
duce images with closed mouths. Some example synthesis results are provided in
Fig. 4. Though slight artifacts are sometimes introduced by this process (some
can be seen in Fig. 4) these typically do not alter the general facial appearances
and are less pronounced than the noise often present in unconstrained images.

4 Face recognition pipeline

Data augmentation techniques are not restricted to training and are often also
applied at test time. Our augmentations provide opportunities to modify the
matching process by using different augmented versions of the input image. We
next describe our recognition pipeline including these and other novel aspects.

4.1 CNN training with our augmented data

Augmented training data: Our pipeline employs a single CNN trained on
both real and augmented data generated as described in Sec. 3. Specifically,
training data is produced from original CASIA images. It consists of the fol-
lowing image types: (i) original CASIA images aligned by a simple similarity
transform to two coordinate systems: roughly frontal facing faces (face yaw es-
timates in [−30◦... 30◦]) are aligned using nine landmarks on an ideal frontal
template, while profile images (all other yaw angles) are aligned using the vis-
ible eye and the tip of the nose. (ii) Each image in CASIA is rendered from
three novel views in yaw angles {0◦,±40◦,±75◦}, as described in Sec. 3.1. (iii)
Synthesized views are produced by randomly selecting a 3D generic face model
from S as the underlying face shape (see Sec. 3.2), thereby adding shape varia-
tions. (iv) Finally, a mouth neutralized version of each image is also added to the
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training (Sec. 3.3). This process raises the total number of training images from
494,414 in the original CASIA WebFace set to 2,472,070 images in our complete
(pose+shape+expression) augmented dataset. Note that this process leaves the
number of CASIA WebFace subjects unchanged, inflating only the number of
images per subject (Fig. 1b).
CNN fine-tuning: We use the very deep VGGNet [34] CNN with 19 layers,
trained on the large scale image recognition benchmark (ILSVRC) [30]. We fine
tune this network using our augmented data. To this end, we keep all layers
{Wk,bk}19k=1 of VGGNet except for the last linear layer (FC8) which we train
from scratch. This layer produces a mapping from the embedded feature x ∈ RD
(FC7) to the subject labels N = 10, 575 of the augmented dataset. It computes
y = W19x + b19, where y ∈ RN is the linear response of FC8. Fine-tuning is
performed by minimizing the soft-max loss:

L({Wk,bk}) = −
∑
t

log

(
eyl∑N
g=1 eyg

)
(1)

where l is the ground-truth index over N subjects and t indexes all training
images. Eq. (1) is optimized using Stochastic Gradient Descent (SGC) with
standard L2 norm over the learned weights. When performing back-propagation,
we learn FC8 faster since it is trained from scratch while other network weights
are updated with a learning rate an order of magnitude lower than FC8.

Specifically, we initialize FC8 with parameters drawn from a Gaussian distri-
bution with zero mean and standard deviation 0.01. Bias is initialized with zero.
The overall learning rate µ for the entire CNN is set to 0.001, except FC8 which
uses learning rate of µ × 10. We decrease learning rate by an order of magni-
tude once validation accuracy for the fine tuned network saturates. Meanwhile,
biases are learned twice as fast as the other weights. For all the other parameter
settings we use the same values as originally described in [18].

4.2 Face recognition with synthesized faces

General matching process: After training the CNN, we use the embedded
feature vector x = f(I; {Wk,bk}) from each image I as a face representation.
Given two input images Ip and Iq, their similarity, s(xp,xq) is simply the nor-
malized cross correlation (NCC) of their feature vectors.

The value s(xp,xq) is the recognition score at the image level. In some cases
a subject is represented by multiple images (e.g., a template, as in the Janus
benchmark [16]). This plurality of images can be exploited to improve recognition
at test time. In such cases, image sets are defined by P = {x1, ...,xP } and
Q = {x1, ...,xQ} and a similarity score is defined between them: s(P,Q).

Specifically, we compute the pair-wise image similarity scores, s(xp,xq), for
all xp ∈ P and xq ∈ Q, and pool these scores using a SoftMax operator, sβ(P,Q)
(Eq.(2), below). Though our use of SoftMax is inspired by the SoftMax loss
often used by CNNs, our aim is to get a robust score regression instead of a
distribution over the subjects. SoftMax for set fusion can be seen as a weighted
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average in which the weight depends on the score when performing recognition. It
is interesting to note that the SoftMax hyper-parameter β controls the trade-off
between averaging the scores or taking the max. (or min.). That is:

sβ(·, ·) =


max(·) if β →∞
avg(·) if β = 0

min(·) if β → −∞
and sβ(P,Q) =

∑
p∈P,q∈Q s(xp,xq)e

β s(xp,xq)∑
p∈P,q∈Q eβ s(xp,xq)

.

(2)
Pair-wise scores are pooled using Eq.(2) and we finally average the SoftMax
responses over multiple values of β = [0...20] to get the final similarity score:

s(P,Q) =
1

21

20∑
β=0

sβ(P,Q). (3)

The use of β positive values is due to our use of a score for recognition, so the
higher the value, the better. In our experiments we found that the SoftMax
operator reaches a remarkable trade-off between averaging the scores and taking
the maximum. The improvement given by the proposed SoftMax fusion is shown
in Tab. 1: we can see how the proposed method largely outperforms standard
fusion techniques on IJB-A, in which subjects are described by templates.

Fusion↓ IJB-A Ver. (TAR) IJB-A Id. (Rec. Rate)

Metrics → FAR0.01 FAR0.001 Rank-1 Rank-5 Rank-10

Min 26.3 11.2 33.1 56.1 66.8
Max 77.6 46.4 84.8 93.3 95.6
Mean 79.9 53.0 84.6 94.7 96.6

SoftMax 86.6 63.6 87.2 94.9 96.9

Table 1: SoftMax template fusion for score pooling vs. other standard fusion tech-
niques on the IJB-A benchmark for verification (ROC) and identification (CMC) resp.

Exploiting pose augmentation at test time: The Achilles heel of many
face recognition systems is cross pose face matching; particularly when one of
the two images is viewed at an extreme, near profile angle [45,22,6]. Directly
matching two images viewed from extremely different viewpoints often leads to
poor accuracy as the difference in viewpoints affects the similarity more than
subject identities. To mitigate this problem, we suggest rendering both images
from the same view: one that is close enough to the viewpoint of both images.
To this end, we leverage our pose synthesis method of Sec. 3.1 to produce images
in poses better suited for recognition and matching.

Cross pose rendering can, however, come at a price: Synthesizing novel views
for faces runs the risk of producing meaningless images whenever facial land-
marks are not accurately localized and the pose estimate is wrong. Even if pose
was correctly estimated, warping images across poses involves interpolating in-
tensities, which leads to smoothing artifacts and information loss. Though this
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Fig. 5: Ablation study of our data synthesis and test time matching methods on IJB-A.

may affect training, it is far more serious at test time where we have few images
to compare and ruining one or both can directly affect recognition accuracy.

Rather than commit to pose synthesis or its standard alternative, simple
yet robust in-plane alignment, we use both: We found that pose synthesis and
in-plane alignment are complimentary and by combining the two, recognition
performance improves. For an image pair (Ip, Iq) we compute two similarity
scores: one using in-plane aligned images and the other using images rendered
to a mutually convenient view. This view is determined as follows: If the two
images are near frontal then we frontalize them [11], if they are both near profile
we render to 75◦, otherwise we render to 40◦.

When matching templates, (P,Q), scores computed for in-plane aligned im-
age pairs and pose synthesized pairs are pooled separately using Eq. (2). This is
equivalent to comparing the sets P and Q twice, once with each alignment. The
two similarities are then averaged for a final template level score.

5 Experiments

We tested our approach extensively on the IARPA Janus benchmarks [16] and
LFW [13]. We perform a minimum of database specific training, using the train-
ing images prescribed by each benchmark protocol. Specifically, we perform Prin-
cipal Component Analysis (PCA) on the training images of the target dataset
with the features x extracted from the CNN trained on augmented data. This did
not include dimensionality reduction; we did not cut any component after PCA
projection. Following this, we apply root normalization to the new projected fea-
ture, i.e., x→ sign(x) |x|c, as previously proposed for the Fisher Vector encoding
in [31]. We found that a value of c = 0.65 provides a good baseline across all the
experiments. For each dataset we report the contribution of our augmentations
compared with state-of-the-art methods which use millions of training images.

5.1 Results on the IJB-A benchmarks

IJB-A is a new publicly available benchmark released by NIST to raise the chal-
lenges of unconstrained face identification and verification methods. Both IJB-A
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Without Video pooling With Video pooling

Augmentation ↓ IJB-A Ver. (TAR) IJB-A Id. (Rec. Rate) IJB-A Ver. (TAR) IJB-A Id. (Rec. Rate)

Metrics → FAR0.01 FAR0.001 Rank-1 Rank-5 Rank-10 FAR0.01 FAR0.001 Rank-1 Rank-5 Rank-10

No Augmentation 74.5±1.88 54.3±2.81 77.1±1.21 89.0±1.02 92.3±0.89 75.0±2.11 55.0±2.55 77.8±1.32 89.5±0.99 92.6±0.69

Pose 84.9±1.56 62.3±6.53 86.3±0.97 94.5±0.61 96.5±0.55 86.3±1.81 67.9±5.37 88.0±1.18 94.7±0.80 96.6±0.59

Pose, Shapes 86.3±1.66 62.0±6.21 87.0±0.81 94.8±0.69 96.9±0.48 87.8±1.46 69.2±4.80 88.9±0.96 95.6±0.69 97.1±0.52

Pose, Shapes, Expr. 86.6±1.27 63.6±6.00 87.2±0.96 94.9±0.77 96.9±0.58 88.1±1.42 71.0±5.24 89.1±1.04 95.4±0.88 97.2±0.59

Table 2: Effect of each augmentation on IJB-A performance on verification (ROC)
and identification (CMC), resp. Only in-plane aligned images used in these tests.

and the Janus CS2 benchmark share the same subject identities, represented
by images viewed in extreme conditions, including pose, expression and illu-
mination variations, with IJB-A splits generally considered more difficult than
those in CS2. The IJB-A benchmarks consist of face verification (1:1) and face
identification (1:N) tests. Contrary to LFW, Janus subjects are described using
templates containing mixtures of still-images and video frames.

It is important to note that the Janus set has some overlap with the images in
the CASIA WebFace collection. In order to provide fair comparisons, our CNNs
were fine tuned on CASIA subjects that are not included in Janus (Sec. 4.1).

Face detection: Our pipeline uses the face landmark detector of [2] for head
pose estimation and alignment. Although we found this detector quite robust, it
failed to detect landmarks on some of the more challenging Janus faces. When-
ever the detector failed on all the images in the same template, we use the images
cropped to their facial bounding boxes as provided in the Janus data.

Video pooling: Whenever face templates include multiple frames from a sin-
gle video we pool together CNN features extracted from the same video: this,
by simple element wise average over all the features extracted from that video’s
frames (i.e., features are not pooled across videos but only within each video).
Similar pooling techniques were very recently demonstrated to provide substan-
tial performance enhancements (e.g., [35]). We refer to this technique as video
pooling and report its influence on our system, and, whenever possible, for our
baselines. This process does not change the general matching process explained
in Sect. 4.2: When performing video-pooling an entire video is represented as a
single pooled feature vector and treated as a single image.

In all our IJB-A and Janus CS2 results this method provided noticeable
performance boosts: we compare video pooling to pair-wise single image com-
parisons (referred as without video pooling in our results).

Ablation Study: We analyze the contribution of each augmentation technique
on the IJB-A dataset. Clearly, the biggest gain is given by pose augmentation
(red curve) over the baseline (blue curve) in Fig. 5a. The improvement is espe-
cially noticeable in the rank-1 recognition rate for identification. The effect of
video pooling along with each data augmentation method is provided in Tab. 2.

We next evaluate the effect of pose synthesis at test time combined with the
standard in-plane alignment (Sec. 4.2), in Tab 3 and in Fig. 5b. Evidently, these
methods combined contribute to achieving state-of-the-art performance on the
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Without Video pooling With Video pooling

Image type ↓ IJB-A Ver. (TAR) IJB-A Id. (Rec. Rate) IJB-A Ver. (TAR) IJB-A Id. (Rec. Rate)

Metrics → FAR0.01 FAR0.001 Rank-1 Rank-5 Rank-10 FAR0.01 FAR0.001 Rank-1 Rank-5 Rank-10

In-plane aligned 86.6±1.27 63.6±6.00 87.2±0.96 94.9±0.77 96.9±0.58 88.1±1.42 71.0±5.24 89.1±1.04 95.4±0.88 97.2±0.59

Rendered 84.7±1.50 64.6±4.40 87.3±1.21 95.0±0.59 96.8±0.69 84.8±1.38 66.4±4.88 88.0±1.15 95.5±0.69 96.9±0.58

Combined 87.8±1.22 67.4±4.32 89.5±1.16 95.8±0.59 97.4±0.39 88.6±1.65 72.5±4.41 90.6±1.27 96.2±0.65 97.7±0.42

Table 3: Effect of in-plane alignment and pose synthesis at test-time (matching) on
IJB-A dataset respectively for verification (ROC) and identification (CMC).

IJB-A benchmark. We conjecture that this is mainly due to three contributions:
domain-specific augmentation when training the CNN, combination of SoftMax
operator, video pooling and finally pose synthesis at test time.

Comparison with the state-of-the-art: Our proposed method achieves state
of the art results in the IJB-A benchmark and Janus CS2 dataset. In particular, it
largely improves over the off the shelf commercial systems COTS and GOTS [16]
and Fisher Vector encoding using frontalization [4]. This gap can be explained
by the use of deep learning alone. Even compared with deep learning based
methods, however, our approach achieves superior performance and with very
wide margins. This is true even comparing our results to [41], who use seven
networks and fuse their output with the COTS system. Moreover, our method
improves in IJB-A verification over [41] in 15% TAR at FAR=0.01 and ∼20%
TAR at FAR=0.001, also showing a better rank-1 recognition rate.

It is interesting to compare our results to those reported by [5] and [32]. Both
fine tuned their deep networks on the ten training splits of each benchmark,
at substantial computational costs. Some idea of the impact this fine tuning
can have on performance is available by considering the huge performance gap
between results reported before and after fine tuning in [5]. Our own results,
obtained by training our CNN once on augmented data, far outperform those
of [32] also largely outperforming those reported by [5]. We conjecture that by
training the CNN with augmented data we avoid further specializing all the
parameters of the network on the target dataset. Tuning deep models on in-
domain data is computationally expensive and thus, avoiding overfitting the
network at training time is preferable.

5.2 Results on Labeled Faces in the Wild

For many years LFW [13] was the standard benchmark for unconstrained face
verification. Recent methods dominating LFW scores use millions of images col-
lected and labeled by hand in order to obtain their remarkable performances.
To test our approach, we follow the standard protocol for unrestricted, labeled
outside data and report the mean classification accuracy as well as the 100%
- EER (Equal Error Rate). We prefer to use 100% - EER in general because
it is not dependent on the selected classification threshold but we still report
verification accuracy to be comparable with the other methods.
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Methods ↓ CS2 Ver. (TAR) CS2 Id. (Rec. Rate) IJB-A Ver. (TAR) IJB-A Id. (Rec. Rate)

Metrics → FAR0.01 FAR0.001 Rank-1 Rank-5 Rank-10 FAR0.01 FAR0.001 Rank-1 Rank-5 Rank-10

COTS [16] 58.1±5.4 37 55.1±3.0 69.4±1.7 74.1±1.7 – – – – –

GOTS [16] 46.7±6.6 25 41.3±2.2 57.1±1.7 62.4±1.8 40.6±1.4 19.8±0.8 44.3±2.1 59.5±2.0 –

OpenBR [17] – – – – – 23.6±0.9 10.4±1.4 24.6±1.1 37.5±0.8 –

Fisher Vector [4] 41.1±8.1 25.0 38.1±1.8 55.9±2.1 63.7±2.5 – – – – –

Wang et al. [41] – – – – – 73.3±3.4 51.4±6.0 82.0±2.4 92.9±1.3 –

Chen et al. [5] 64.9±1.5 45 69.4±1.2 80.9±1.1 85.0±0.9 57.3±2.0 – 72.6±3.4 84.0±2.3 88.4±2.5

Pooling Faces [12] 87.8 74.5 82.6 91.8 94.0 81.9 63.1 84.6 93.3 95.1

Deep Multi-Pose [1] 89.7 – 86.5 93.4 94.9 78.7 – 84.6 92.7 94.7

PAMs [24] 89.5±0.6 78.0±1.4 86.2±0.9 93.1±0.5 94.9±0.6 82.6±1.8 65.2±3.7 84.0±1.2 92.5±0.8 94.6±0.7

Chen et al. [5] (f.t.) 92.1±1.3 78 89.1±1.0 95.7±0.7 97.2±0.5 83.8±4.2 – 90.3±1.2 96.5±0.8 97.7±0.7
Swami S. et al. [32] (f.t.) – – – – – 79±3.0 59±5.0 88±1.0 95±0.7 –

Ours 92.6±0.61 82.4±1.52 89.8±0.97 95.6±0.58 96.9±0.60 88.6±1.65 72.5±4.41 90.6±1.27 96.2±0.65 97.7±0.42

Table 4: Comparative performance analysis on JANUS CS2 and IJB-A respectively
for verification (ROC) and identification (CMC). f.t. denotes fine tuning a deep network
multiple times for each training split. A network trained once with our augmented data
achieves mostly superior results, without this effort.

Improvement for each augmentation: Fig. 6a provides ROC curves for each
augmentation technique used in our approach. The green curve represents our
baseline, that is the CNN trained on in-plane aligned images with respect to a
frontal template. The ROC improves by a good margin when we inject unseen
rendered images across poses into each subject. Indeed the 100% - EER improves
by +1.67%. Moreover, by adding both shapes and expressions, performance im-
proves even more, reaching 100% - EER rate of 98.00% (red curve). See Tab. 6b
for a comparison with methods trained on millions of downloaded images.

5.3 Summary of results and discussion

The results in this section clearly show that synthesizing training images us-
ing domain tools leads to dramatic increase in recognition accuracy. This may
be attributed to the potential of domain specific augmentation to infuse train-
ing data with important intra-subject appearance variations; the very variations
that seem hardest to obtain by simply downloading more images. We believe
that the extent to which this domain specific data augmentation affects perfor-
mance depends on the data set used as seed for the augmentation (in this paper,
CASIA): Different sets have their own appearance biases and so would benefit
differently from the introduction of different synthesized appearance variations.

We caution that despite the ability to simulate novel face samples, our system
still relies on a deep-learned model and alone, a generative model which synthe-
sizes gallery images to match the probe is still insufficient. The learned model
currently handles appearance variations such as occlusions, image quality and
other confounding factors, all of which may affect the final face representation
and are not handled by our augmentation process. Discriminative deep-learned
models are therefore required to accurately compare these representations.

Finally, a comparison of our results on LFW to those reported by methods
trained on millions of images [39,40,28,33], shows that with the initial set of less
than 500K publicly available images, our method surpasses [39] and [28] (without
their metric learning, not applied here), falling only slightly behind the rest.
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(a) Ablation Study

Method Real Synth Net Acc. (%) 100% - EER

Fisher Vector Faces [27] – – – 93.0 93.1
DeepFace [39] 4M – 3 97.35 –
Fusion [40] 500M – 5 98.37 –
FaceNet [33] 200M – 1 98.87 –
FaceNet + Alignment [33] 200M – 1 99.63 –
VGG Face [28] 2.6M – 1 – 97.27
VGG Face (triplet loss) [28] 2.6M – 1 98.95 99.13

Us, no aug. 495K – 1 95.31 95.26
Us, aug. pose 495K 2M 1 97.01 96.93
Us, aug. pose, shape, expr. 495K 2.4M 1 98.06 98.00

(b) Results for methods trained on millions of images

Fig. 6: LFW verification results. (a) Break-down of the influence of different training
data augmentation methods. (b) Performance comparison with state of the art meth-
ods, showing the numbers of real (original) and synthesized training images, number
of CNNs used by each system, accuracy and 100%-EER.

6 Conclusions

This paper makes several important contributions. First, we show how domain
specific data augmentation can be used to generate (synthesize) valuable ad-
ditional data to train effective face recognition systems, as an alternative to
expensive data collection and labeling. Second, we describe a face recognition
pipeline with several novel details. In particular, its use of our data augmenta-
tion for matching across poses in a natural manner. Finally, in answer to the
question in the title, our extensive analysis shows that though there is certainly
a benefit to downloading increasingly larger training sets, much of this effort can
be substituted by simply synthesizing more face images.

There are several compelling directions of extending our work. Primarily,
additional face specific data augmentation methods can be used to provide ad-
ditional intra subject appearance variations. Appealing potential augmentation
techniques, not used here, are facial age synthesis [15] or facial hair manipula-
tions [26]. Finally, beyond faces there may be other domains where such approach
is relevant and where the introduction of synthetically generated training data
can help mitigate the many problems of data collection for CNN training.
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