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Abstract— Recent work demonstrated that computer graph-
ics techniques can be used to improve face recognition perfor-
mances by synthesizing multiple new views of faces available
in existing face collections. By so doing, more images and
more appearance variations are available for training, thereby
improving the deep models trained on these images. Similar
rendering techniques were also applied at test time to align
faces in 3D and reduce appearance variations when comparing
faces. These previous results, however, did not consider the
computational cost of rendering: At training, rendering millions
of face images can be prohibitive; at test time, rendering can
quickly become a bottleneck, particularly when multiple images
represent a subject. This paper builds on a number of observa-
tions which, under certain circumstances, allow rendering new
3D views of faces at a computational cost which is equivalent
to simple 2D image warping. We demonstrate this by showing
that the run-time of an optimized OpenGL rendering engine
is slower than the simple Python implementation we designed
for the same purpose. The proposed rendering is used in a face
recognition pipeline and tested on the challenging IJB-A and
Janus CS2 benchmarks. Our results show that our rendering
is not only fast, but improves recognition accuracy.

I. INTRODUCTION
Over the last few years face recognition capabilities made

extraordinary progress. Much of this improvement can be
attributed to the success of deep learning based methods
which learn discriminative face representations from massive
training sets. These methods make an underlying assumption
that by collecting large enough training sets, deep networks
will have sufficient examples of both inter-class and intra-
class appearance variations. From these variations, networks
can learn to produce features which amplify subject identity
and suppress other, confounding appearance variations.

Unfortunately, this underlying assumption often does not
hold in practice. Even huge data sets, such as the CASIA
WebFace collection [2], demonstrate strong biases towards
frontal facing faces and, on average, offer only few example
images for each subject [3]. Consequently, the intra-class
appearance variations offered by these sets are limited. To
address this problem, a number of recent methods use
computer graphics techniques to enrich existing face sets
by synthesizing new views of the face images they contain.
Thus, an existing face set is inflated to many times its size
by introducing additional intra-subject appearance variations.
Pose variations in particular (e.g., Fig. 1, bottom) were shown
to provide a substantial boost to the quality of the networks
that were trained on these augmented sets.

Similar rendering techniques were also applied when
matching face images: To reduce appearance variations due

Fig. 1: Rendered (synthesized) new views of a real face.
Input face image (left) is rendered to frontal views by
previous work (top) and to multiple views by our fast method
(bottom). Results in top row taken from [1].

to different poses, faces were rendered to common 3D views.
The rendered faces then shared the same 3D pose and were
therefore easier to compare in order to determine identity.

A remaining concern with these rendering techniques,
however, is that they can be computationally expensive.
When applied to augment huge face collections, processing
can requires days. At test time, where current deep systems
utilize graphical processing units (GPU) to expedite feature
extraction, rendering new views to align the faces, even using
optimized code, can quickly become a bottleneck.

This paper addresses these concerns by describing a simple
and highly efficient method for rendering faces in multiple
views (e.g., Fig. 1, bottom). We follow the recent work of [1],
[3], [4], [5] and [6] by using generic 3D face models in order
to produce new views. They showed that by doing so, they
obtain the same quality of rendered views yet more stable
results than others who estimated 3D facial structures prior to
alignment and rendering (e.g., [7], [8], [9]). We explain why
an important benefit of this approach, previously overlooked,
is its computational simplicity.

Specifically, this paper offers the following contributions.
(1) We explain how new views of faces can be synthesized
for the same computational price as standard image warping,
by using generic 3D face models and fixed target poses.
(2) We compare the runtime of this approach with existing
face rendering techniques. We further evaluate the influence
of our approach on face recognition performance using the
challenging IJB-A and Janus CS2 benchmarks showing it
obtains state of the art results. (3) Previous related work978-1-5090-4023-0/17/$31.00 ©2017 IEEE



rendered faces without their background. Our method renders
faces with backgrounds allowing us to introduce pooling of
features across 3D face poses.

II. RELATED WORK

Many previous attempts were made to synthesize new
views of faces appearing in single images. In the past,
most of these efforts aimed at visualization and graphics
applications. To our knowledge, these methods were only
recently successfully applied for face recognition.

Early methods for synthesis of new facial views attempted
to first estimate the 3D shape of the face. These varied
in the importance they attributed to the accuracy of the
reconstruction, when compared to ground truth facial shape.
Statistical methods, such as the seminal Morphable-Models
based methods [10], [11], [12] used example 3D face shapes
to span the space of facial 3D geometries, expressions and
textures. These methods, however, assumed controlled view-
ing conditions, restricting their use in real-world settings.

By assuming Lambertian reflectance and constrained light-
ing conditions, shape from shading based methods such
as [13] demonstrated remarkably detailed 3D reconstructions
which could then be used to generate new views. These
methods also assume that the faces are cleanly segmented
from their background. All these assumptions make them
likewise unsuitable for our purposes.

Recent examples of new view synthesis for face recogni-
tion include the work of [14] and its application to face
alignment and recognition in [7]. Both of these methods
relax the requirement for an accurate 3D reconstruction,
and instead describe a method for coarse 3D face shape
estimation from unconstrained images. These reconstructions
were used by [7] to produce presumably aligned forward
facing faces for recognition.

Most relevant to our work are the recent methods of [1],
[3], [4] and [6]. Hassner et al. [1], in particular, showed that
attempting to estimate 3D facial shapes prior to rendering
new 3D views for face recognition can actually be inferior
to simply using a generic 3D face shape. Though counter-
intuitive, this claim was supported by qualitative examples
showing that faces aligned using a single generic face are
qualitatively similar to those produced by estimating 3D
shape. This was quantitatively verified by nearly matching
the recognition accuracy of [7], with a much simpler, non-
deep pipeline and without using millions of training images.
Their work was later extended to multiple 3D views by [4]
and multiple generic shapes in [3] in both cases, showing
improved performances using deep learning.

Our work follows theirs, but focusing here on the me-
chanics of the new view generation method. Specifically, we
show that beyond the advantages they report for the use
of generic shapes, an important advantage not previously
noted by others, is its potentially far cheaper computational
cost and much simpler rendering process. These benefits are
particularly important considering the massive numbers of
images that are processed in contemporary face data sets
and the complexity of modern face recognition systems.

III. STANDARD FACE RENDERING

Existing methods used to synthesize new views of faces
from single images involve two standard and well under-
stood steps, known in computer graphics as texture mapping
and ray casting / rasterization. We next provide a cursory
overview of these steps. More details are available in any
standard computer graphics textbook [15].

A. Overview of face rendering

Texture mapping of an image I (i.e., the input image of
a face viewed in unconstrained settings) onto a 3D surface
F ⊂ R3 is the process of assigning every 3D surface position
P = (X,Y, Z) ∈ F with a location q = (u, v) in the image
(where image coordinates are often normalized to the range
of u, v ∈ [0, 1]). The shape F is assumed to be a 3D face
shape, which may have been estimated from the input image
of the face, I, or is a predetermined, generic face.

Following texture mapping, F is projected to the desired
view, J. To this end, the output view’s camera matrix,
MJ = KJ

[
RJ tJ

]
, is manually specified in order to

set the desired output viewpoint (e.g., frontal view for face
frontalization [1]). This includes setting the intrinsic camera
parameters in KJ , and the 3D rotation and translation in
RJ tJ , respectively, both in the coordinate frame of the 3D
shape. The matrix MJ is then used to intersect the rays
emanating from J’s center of projection, passing through
each of its pixels, pi = (xi, yi) ∈ J, and the surface of F .
Each such intersection is a 3D point Pi = (Xi, Yi, Zi) ∈ F .
Following texture mapping, these 3D points are linked to
locations qi = (ui, vi) in the input face image, I. Thus, the
pixel pi in the output image is assigned intensity values by
sampling I at its determined qi.

B. Texture mapping by face pose estimation

Texture mapping of the input face image I to the face
shape F is performed automatically. To this end, a facial
landmark detection method is used to locate k landmarks in
the face image I. This process is agnostic to the particular
landmark detection method; In [1] the supervised descent
method [16] was used whereas our implementation uses
the method of [17]. Regardless, for each of the detected
landmarks qi ∈ R2 we assume corresponding landmarks,
Pi ∈ R3 specified once on the 3D surface F (index i
indicates the same facial landmark in I and the 3D shape F .)

Given the corresponding landmarks qi ↔ Pi we use
PnP [18] to estimate extrinsic camera parameters for the
input image I. Unlike [3], we assume a fixed intrinsic camera
matrix KI , estimating only the rotation and translation
matrices RI tI , in the 3D model’s coordinate frame. We
thus obtain a perspective camera model mapping the 3D face
shape F to the input image so that qi ∼ MI Pi where
MI = KI

[
RI tI

]
is the estimated camera matrix for the

input view. Hence, matrix MI can be used to map any point
on the 3D surface onto the input image, thereby providing
the desired texture map.



IV. RAPID RENDERING WITH GENERIC FACES
In light of the importance of rendering as a key step

in many computer graphics applications, tremendous efforts
were dedicated to expediting this process, speeding up state
of the art rendering engines to fractions of a second, even
for complex 3D scenes. Specialized computer hardware –
namely graphical processing units (GPU) – was also de-
veloped for this purpose. Our work is tangential to these
efforts. Specifically, we show that by assuming a generic 3D
shape and fixed desired output poses, a great deal of the
effort required to render new facial views can be performed
at preprocessing, and by so doing, substantially reduce the
effort required to produce new views and the complexity of
the system required for rendering.

A. Precomputing output projections
One of the most time consuming steps in the process

described in Sec. III is ray casting: computing the locations
of intersections between the rays passing through each output
pixel and the surface of the face. Due to potential self
occlusions, this process may further involve methods such as
Z-buffering or binary space partitioning in order to determine
visibility of the 3D shape at each output pixel [15].

As previously mentioned, these steps can be expedited
using specialized hardware, optimized code and various
approximation methods. We note that when a fixed generic
face shape and output view are used, these steps only need
to be performed once, at preprocessing. Subsequent face
synthesis using the same shape and pose, can skip this step,
and require the same computational effort as standard image
warping in 2D for texture mapping (Sec. III-B).

Specifically, during preprocessing we use a standard ren-
dering engine to perform ray casting of a generic face shape
F onto a desired output view J. Doing so, we store for each
output 2D pixel location pi ∈ J the 3D coordinates Pi ∈ F
projected onto that pixel (i.e., the 3D location of the surface
point Pi visible at pi). This information is stored in a lookup
table U, simply define as:

U(pi) = Pi (1)

In practice, U is stored as an N ×M × 3 matrix, where
N and M are the dimensions of the output view and the last
dimension indexes the X,Y and Z coordinates of the 3D
point projected onto each pixel.

B. Rendering with precomputed projections
Given an input image I containing a face in unconstrained

settings, we render it to a desired new view using U as
follows (see Fig. 2 for a Python code example)1.

1See project at: www.openu.ac.il/home/hassner/projects/augmented faces

import numpy as np
import cv2
U_bar = np.vstack((U, \

np.ones((1, threedee.shape[1]))))
q_bar = MI * U_hat
q = np.divide(q_bar[0:2, :], \

np.tile(q_bar[2, :], (2,1)))
#idx are indices of q inside of the image
q=q[idx]
synth = warpImg(I, N, M, q, idx)
def warpImg(I, N, M, q, idx):

J = np.zeros((N*M, 3))
#fast warping
pixels = cv2.remap(I, \
np.asarray( q[0,:] ).astype('float32'),\
np.asarray( q[1,:] ).astype('float32'),\
cv2.INTER_CUBIC)
#copy the interpolated pixel back ( Eq. (1) )
J[idx,:] = pixels
J = J.reshape(( N, M, 3), order='F')
J = J.astype('uint8')
return J

Fig. 2: Python code snippet for 3D rendering.

We first estimate the 3D pose of the face, as described in
Sec. III-B. This provides a camera matrix MI associating
3D points on the surface of F with pixels in I. Let

q̄ = MIŪ, (2)

where Ū is matrix U reshaped to a 4× (NM) matrix where
the columns are the 3D points stored in U, in homogeneous
notation. Matrix q̄ is then a 3× (NM) matrix with columns
representing the 2D projections of these 3D points onto I,
also in homogeneous coordinates.

An output view J can then be produced simply by sam-
pling image I using q̄ (following conversion to Euclidean
coordinates). Sampled intensities are mapped back to the
output view J by using the correspondence between columns
in q̄, columns in Ū, and (x, y) pixel locations in U.
Run-time: This process includes precisely the same steps as
standard inverse warping [19]. Compared with, for example,
the 2D warping regularly performed in real time on even
cellphone devices, the only difference is in applying a
3 × 4 camera matrix transformation to homogeneous 3D
coordinates, rather than a 3 × 3 projective transformation.

C. Preparing generic 3D heads and backgrounds

In [3], ten generic 3D shapes S = {F1, ...,F10}, from
the Basel Face Set [20], were used to model head shape
variations. These 3D faces are aligned with each other and
so 3D landmarks required for pose estimation (Sec. III-
B) need only be selected once; selected landmarks are
then automatically transferred to all other models. Beyond
simplifying facial landmark selection for pose estimation,



Fig. 3: Preparing generic 3D models: Head added to a generic
3D face along with two planes for background.

this also allows segmenting faces from their background and
selecting eye regions to avoid cross-eyed results [1].

These models, however, only represent the facial region of
the head. This is presumably why [3] rendered only partial
head views without backgrounds and why [7] and [1] only
used tight bounding boxes around the center of the face.

Fortunately, rendering full heads and backgrounds can
naturally be included in the process described in the previous
sections. This is performed by stitching the ten 3D models
to an additional, generic 3D structure containing head, ears
and neck and adding a plane representing a flat background.

The process of combining 3D faces to 3D heads is
described in Fig. 3. We use the generic 3D head from [21].
We removed its facial region and exchange it with the 3D
faces from [20]. To allow blending with different 3D faces
(e.g., Fig. 3(a)), varying in sizes and shapes, we maintain an
overlap belt with radius r = 2cm (Fig. 3(b)). Given an input
3D face (Fig. 3(a)), we merge it onto the head model using
soft boundary blending: We first detect points on the overlap
region of the face model. Each point X is then assigned a
soft blending weight w:

w =
1

2
− 1

2
cos

(πd
r

)
, (3)

where d is the distance to the boundary. Next, X is adjusted
to the new 3D position X′ by:

X′ = wX + (1− w)PX , (4)

where PX is the closest 3D point from the head. The result
is a complete 3D face model (Fig. 3(c)) . Ostensibly, an
alternative to this method would be to scan new models, with
complete 3D heads. The method described above was chosen
in order to minimize the differences between our recognition
system and the one used by [3], including the use of the same
3D face shapes from in their system.

To additionally preserve the background, we simply add
two planes to the 3D model: one positioned just behind
the head and another, perpendicular plane, on its right. This
second plane is used to represent the background when the
input face is rendered to a profile view, in which case the
first plane is mapped to a line. Fig. 3(d) shows the models

we produced using one of the 3D face shapes from [20].
Fig. 3(e) shows the rendered view of this generic face from
the profile pose used by our system.

V. FACE RECOGNITION

A. Training with rendered face images

We use the proposed face rendering technique in a face
recognition pipeline. We employ a system similar to the
one recently proposed by [3]. Their system uses a single
Convolutional Neural Network (CNN) trained on both real
face images and their rendered views.

We use the VGGNet, off-the-shelf deep models of [22],
originally trained on the ImageNet, large scale image recog-
nition benchmark (ILSVRC) [23]. We fine-tuned this CNN
on our training data, which included the CASIA Web-
Faces [2], augmented by aligning the faces using similarity
transform (i.e., in-plane alignment) and rendering them to the
three yaw angles with a 3D generic face selected randomly
from the ten prepared in Sec. IV-C.

During training, the network learns an embedding function
that maps an input image I (used here to represent both
real and rendered views) to a subject label: f : I 7→ c,
where c ∈ C and C represents the set of identities in CASIA.
Standard Soft-Max loss was used for the optimization, using
the ground-truth CASIA identity labels. All other training
parameters were similar to those reported by [3].

B. Face matching pipeline

Face representation: At test time we use only part of the
learned function f : I 7→ c, without relying on the closed set
of CASIA subjects, C. The trained CNN is instead used to
extract features for open-set recognition.

It is well known [3], [4] that the penultimate layer of a
CNN retains high level information, useful at test time as
a discriminative feature representation. For this reason, we
drop the classification layer from the network and use its fc7
response after ReLu activation as our face representation, x.

This face representation x is further specialized to the
target benchmark by applying cheap, unsupervised Principal
Component Analysis (PCA) learned from the training splits
of the test benchmark. Power normalization is then applied
to the PCA projected features. This step is widely used in
Fisher-Vector encoding schemes to improve their represen-
tation power. Finally, the similarity of two faces, s(x1,x2),
is taken to be their correlation score.
Pooling across Synthesized Views: Going beyond the sys-
tem described in [3], we test also pooling of features obtained
from image I and its rendered views. Specifically, where [3]
separately matched the input image, its in-plane aligned view



Fig. 4: Face representation: given an input image (left), it is rendered to novel viewpoints as well as in-plane aligned. These
are all encoded by our CNN. The CNN features are then pooled by element wise average, obtaining the final representation.

and its rendered views, we extract CNN features for all
these views and then pool them together using element-wise
average. This process is visualized in Fig. 4.

The idea here follows similar techniques suggested by,
e.g., [24]. Unlike them we use the pooled features directly,
rather than train subsequent networks to process them. Al-
though the idea of pooling multiple CNN responses over
transformation is not new [22] and is extensively done in
deep learning framework such as Caffé [25] by sampling
random patches and averaging their features, we do it by
exploiting the face domain and explicitly pool over synthet-
ically generated out-of-plane transformations.

The rationale for this approach is that the CNN is trained
to produce features which should be invariant to confounding
factors (e.g., pose, illumination, expression, etc.) instead
emphasizing subject identity. In practice, these confounding
factors affect the representation produced by the CNN.
These effects can be considered noise, which can sometimes
overpower the subject’s identity (the signal) in the deep
feature representation. By pooling together features obtained
by multiple, synthetically applied identity preserving trans-
formations, we aim to suppress this noise and amplify the
signal. As we later show, this process proved beneficial
especially at very low false alarm rates (FAR).

Recognition with face templates: In some cases, subjects
are described with a set of images and these images can
originate from different sources or media files. This is the
case in the recently released JANUS benchmarks for uncon-
strained face recognition [26]. These benchmarks represent
a subject using templates; that is, a set of media files
from heterogeneous sources, including still images, frames
sampled from a video, or multiple videos. Following pooling
of the rendered views of each test image (Sec. V-B), our
system performs media pooling of the template features.

Specifically, a template is flattened by first averaging the
representations obtained from video frames, independently
for each video (i.e., video pooling [3]). Following this, a

video is represented by a single feature vector, no matter
the number of frames it originally contained. Next, a final
representation for the template is obtained by pooling to-
gether the features from all images and all videos. Here,
again, element-wise average is performed providing a single,
feature representation per template. Note that this is the same
as performing a single weighted average taking into account
each source. Following this, we evaluate the similarity be-
tween two template as we did when comparing two images,
by simply taking the correlation of two features.

VI. EXPERIMENTAL RESULTS

A. Comparing rendering methods

We compare our rendering approach to a number of recent
methods proposed for rendering new views of face images
and used for face recognition [1], [3], [5], [6]. The rendering
method used by both [6] and [3] is not publicly available;
we implemented it ourselves with the help of its authors. All
run-times are reported on an Intel Core i7-4820K CPU @
3.70GHz (4 cores), 32GB RAM and nVidia Titan X GPU.

We report run-times as well as other relevant aspects
of these rendering systems: their support of multiple pose
rendering (rather than, e.g., only frontalization); use of
multiple 3D shapes; implementation programming language;
dependency on OpenGL; and finally, public availability.

Our report is summarized in Tab. I. For a fair comparison,
we measure the average time (Avg. Rend. Time) required
by each method for rendering alone; time spent on pose
estimation (and landmark detection) was excluded. Speeds
were measured averaging over 2, 000 rendered views.

Our method, despite its implementation in high level,
un-optimized Python code, can generate a rendered view
in 14.27ms. The more recent method of [3], which uses
optimized and compiled OpenGL code, requires more time
(46.12ms) due to the repeated ray casting it performs and
which we instead perform only once at preprocessing. Over-
all our method has a speed-up of about ×3.7.



Method Avg. Rend. Time (ms) Multi-Pose Multi-Shape Implement. Avoid OpenGL Pub. Aval.

CVPRW13 [5] N/A Yes No Blender No No
CVPR15 [1] 66.33±9.51 No No MATLAB Yes Yes
CVPR16 [6]* 46.12±18.45 Yes No Optimized C++ No No
ECCV16 [3]* 46.12±18.45 Yes Yes Optimized C++ No No

Our renderer 14.27±1.98 Yes Yes Python Yes Yes

TABLE I: Overview of render times and various properties of recent face rendering methods. * Our own implementation.

Metrics → Ver. (TAR@FAR) Ide. (Rec.Rate)

ConvNet: VGG19 ↓ 1% 0.1% 0.01% R1 R5 R10

Background and head vs. empty background
Us, (no context) 85.2 68.0 44.2 90.5 96.0 97.5
Us, (context) 86.1 71.1 47.0 91.5 96.5 97.7

Pooling across Synth.
Us, (real+our rend.) 86.1 71.1 47.0 91.5 96.5 97.7
Us, (pool.synth.) 86.0 70.9 49.0 91.4 96.4 97.5

Impact of incremental training
Us, incremental 88.8 75.0 56.4 92.5 96.6 97.4

TABLE II: Comparison of various pipeline components on
the IJB-A benchmark: showing the impact of face context,
pooling across synthesized images and incremental training.

To appreciate the significance of this, synthesizing novel
views using multiple 3D shapes required our method less
than four hours on a cluster with 96 cores for all the faces
in the CASIA WebFace collection [2] (about 500,000 facial
images). This is the entire, end-to-end run time.

B. Analysis of effects on face recognition

To assess the effects of our rendering we evaluated the
face recognition pipeline described in Sect. V. Tab. II re-
ports recognition performances with different experimental
settings, showing the impact each has on performances. In
particular we tested (1) the effect of rendering the back-
ground and entire head with the models prepared in Sec. IV-
C vs. using only the face and a blank background; (2) the
effect of pooling across synthesized images, as we proposed
in Sec. V-B; and (3) incremental CNN training both with
and without the background.

The importance of background: To our knowledge, pre-
vious face recognition methods for synthesis of new facial
views, did not render the background [3], [4], [6], or else did
not use it in their tests [1], [7]. We test the effect background
and the head around the face both have on performance, by
rendering our faces with and without the background plane
and the head regions prepared in Sec. IV-C. To this end, our
entire pipeline (training and testing) was executed with and
without the background and head. Evident from Tab. II and
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Fig. 5: ROC curves on the IJB-A verification for (left) the
use of context; (right) incremental training. See also Tab. II.

Fig. 5 (left) is that the background improves verification rates
at the low FAR rates by ∼ 3%.

Pooling rendered views: We test the impact of the pooling
step of Sec. V-B. This pooling avoids matching rendered
and real images separately, as done by [3], and so sim-
plifies matching. Doing so also improves accuracy: Tab. II
shows that despite the simpler matching scheme, accuracy
improves. This is particularly evident in the low FAR of
0.01% where pooling adds 2% to the accuracy.

Incremental training: Although rendering faces with their
context performs better than without, we next test if com-
bining both can achieve even better results. We begin with
a network trained on in-plane aligned images and rendered
views without background. Once training saturated, we re-
sumed training using rendered views for the same images,
but now produced with backgrounds. Matching used faces
rendered along with their context and pooled across views.

Surprisingly, the results in Tab. II show this network to
perform better than all other combinations, improving at the
very low FAR=0.01% by ∼ 7% and ∼ 4% at FAR=0.1%.
Recognition rates also improve across all ranks. This may be
due to a gradual adaptation of the network to faces: Networks
trained with rendered views without backgrounds, were
initialized with weights obtained by training on a different
domain (ImageNet). By training the network incrementally,
the final network was initialized using images from the target
problem domain, albeit missing their context.

Comparison with state-of-the-art: We compare our best



CS2 IJB-A
Methods Ver. (TAR@FAR) Ide. (Rec.Rate) Ver. (TAR@FAR) Ide. (Rec.Rate)
Metrics 1% 0.1% R1 R5 R10 1% 0.1% R1 R5 R10

COTS [26] 58.1 37 55.1 69.4 74.1 – – – – –
GOTS [26] 46.7 25 41.3 57.1 62.4 40.6 19.8 44.3 59.5 –
OpenBR [27] – – – – – 23.6 10.4 24.6 37.5 –
Fisher Vector [28] 41.1 25 38.1 55.9 63.7 – – – – –
Wang et al. [29] – – – – – 73.2 51.4 82.0 92.9 –
Chen et al. [30] 64.9 45 69.4 80.9 85.0 57.3 – 72.6 84.0 88.4
Deep Multi-Pose [4] 89.7 – 86.5 93.4 94.9 78.7 – 84.6 92.7 94.7
Pooling Faces [31] 87.8 74.5 82.6 91.8 94.0 81.9 63.1 84.6 93.3 95.1
PAMs [6] 89.5 78.0 86.2 93.1 94.9 82.6 65.2 84.0 92.5 94.6
Face Sp. Aug. [3] 92.6 82.4 89.8 95.6 96.9 88.6 72.5 90.6 96.2 97.7
Swami S. et al. [32] – – – – – 87.1 76.6 92.5 – 97.8

Swami S. et al. [33] – – – – – 79 59 88 95 –
Chen et al. [30] 92.1 78 89.1 95.7 97.2 83.8 – 90.3 96.5 97.7
Swami S. et al. + TPE [32] – – – – – 90.0 81.3 93.2 – 97.7

Us 93.9 86.1 92.3 96.4 97.3 88.8 75.0 92.5 96.6 97.4

TABLE III: Performance analysis on JANUS CS2 and IJB-A respectively for verification (ROC) and identification (CMC).
The methods of [33], [30] and [32] all perform supervised training on all of the test benchmark’s training splits.

performing pipeline with published results on the JANUS
CS2 and IJB-A benchmarks (Tab. III). Our report separates
methods according to the type of training applied to the target
benchmark: our method used computationally cheap, unsu-
pervised PCA whereas others used supervised techniques,
trained on each of the ten training splits.

Compared to methods which, like us, did not use the
training splits for supervised training, our method achieves
state of the art results. It moreover falls only slightly
behind methods which explicitly adapt to the test domain
by performing supervised training on each training split of
the test benchmarks. This implies that by careful rendering,
we effectively introduce many of the appearance variations
encountered in the target domain.
Qualitative results: Fig. 6 provides a few qualitative
rendered results. The effect of strong facial expressions and
our use of a static, generic 3D model is shown in Fig. 6(b).
Typical failures due to poor facial landmark detection are
additionally provided in Fig. 6(c).

VII. CONCLUSIONS
This paper discusses practical aspects of rendering new

views for faces appearing in unconstrained views. It shows
that by using generic 3D faces and rendering to fixed views,
much of the computational effort required to render faces
can be performed at preprocessing. This is significant, as
it allows for rapid generation of huge face sets for pro-
viding CNNs with much needed appearance variations. The
simplicity of our method makes it easy to implement and
embed in face recognition pipelines and port to different
platforms. To these contributions we add also a number of
technical novelties (e.g., pooling across rendered 3D views,

incremental training). Taken together, these provide recog-
nition performances comparable to methods which require
computationally expensive domain adaptation by supervised
training on the target domain.
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