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Abstract. Recent methods for learning similarity between images have
presented impressive results in the problem of pair matching (same/not-
same classification) of face images. In this paper we explore how well this
performance carries over to the related task of multi-option face identi-
fication, specifically on the Labeled Faces in the Wild (LFW) image set.
In addition, we seek to compare the performance of similarity learning
methods to descriptor based methods. We present the following results:
(1) Descriptor-Based approaches that efficiently encode the appearance
of each face image as a vector outperform the leading similarity based
method in the task of multi-option face identification. (2) Straightforward
use of Euclidean distance on the descriptor vectors performs somewhat
worse than the similarity learning methods on the task of pair matching.
(3) Adding a learning stage, the performance of descriptor based meth-
ods matches and exceeds that of similarity methods on the pair matching
task. (4) A novel patch based descriptor we propose is able to improve
the performance of the successful Local Binary Pattern (LBP) descriptor
in both multi-option identification and same/not-same classification.

1 Introduction

The Labeled Faces in the Wild (LFW) database [1] offers a unique collection of
annotated faces captured from news articles on the web. The dataset is published
with a specific benchmark, which focuses on the face recognition task of pair
matching. In this task, given two face images, the goal is to decide whether the
two pictures are of the same individual. This is a binary classification problem,
in which the two possible outcomes are “same” or “not-same”.

The simple binary structure of Same-Not-Same classification simplifies the
design of benchmark experiments. However, in many face recognition applica-
tions the task is quite different, and can be defined as follows: given a gallery
containing labeled face images of several individuals (one or more face images
for each person), classify a new set of probe images. The classification label can
be “unknown person” or that of one of the individuals in the gallery.

The existence of the “unknown person” label is crucial at the application
level. However, it makes benchmarking and experimental design much more chal-
lenging. First, the design should address the distribution of unknown faces. This
can be done for example by providing a training set containing images of in-
dividuals not present in the gallery. Second, the likelihood of encountering an
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unknown individual should be defined and may greatly affect the results. For
these reasons, in this work, as in many other face recognition reports, a more
limited task is studied: the multi-option identification task, where the “unknown
person” is excluded.

Methods developed for each of the three identification tasks discussed above
can be adopted for any of the other tasks. For example, one can compute scores
between all gallery and all probe images using pair matching techniques and
then use them for identification based on a winner takes all approach.

Since the LFW benchmark focuses on the pair matching problem, it is im-
portant to understand whether the reported success of algorithms on this bench-
mark carries over to other identification tasks. In addition, we test how descrip-
tor based techniques, which are often studied in multi-option recognition tests,
perform in the pair matching task.

Finally, we develop novel image descriptors that are able to improve per-
formance both in the multi-option task and in the pair matching task. These
descriptors are based on patch statistics, and we suggest using them in combi-
nation with other features.

2 Existing methods

In the previous section we have focused on the importance of the specific face
recognition task. We now turn our attention to relevant face recognition algo-
rithms and techniques.

Modern image similarity learning techniques Recently, some effort has been de-
voted to the estimation of visual similarities between two unseen images [2,3,4,5],
and such methods have been applied to determine whether two images belong to
the same person. One method [5] that has shown good results for uncontrolled
imaging conditions uses Randomized Decision Trees [6] and Support Vector Ma-
chines. In the first image of the pair, image patches (fragments of the image)
are selected at random locations. For each patch the most similar patch in the
second image is searched at a nearby image location. A decision tree is trained to
distinguish between pairs arising from matching images and those arising from
non-matching images. Given a pair of unseen images, a Support Vector Machine
(SVM) classifier is used to determine if they match by aggregating the Decision
Tree output of many image patches. More specifically, the leaf (terminal classi-
fication node) of the decision tree is recorded for each pair of patches, and the
SVM input consists of a binary vector that indicates if patches arising from a
particular pair of images have reached a certain leaf.

Descriptor based methods for face recognition Face Images can be most readily
described by statistics derived from their intensities. Intensities have thus served
in many template-based methods. The intensities were sometimes normalized
and sometimes replaced by edge responses [7]. More recently [8,9,10], Gabor
wavelets have been used to describe the image appearance.
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Fig. 1. (a) The LBP image-texture descriptor is computed locally at each pixel lo-
cation. It considers a small neighborhood of a pixel, and thresholds all values by the
central pixel’s value. The bits which represent the comparison results are then trans-
formed into a binary number. The histogram of these numbers is used as a signature
describing the texture of the image. (b-c) Present an example image from the LFW
data set, and its LBP encoding (different intensities representing different codes.)

A texture descriptor called Local Binary Patterns (LBP) [11,12,13]has been
shown to be extremely effective for face recognition [14]. The most simple form of
LBP is created at a particular pixel location by threshholding the 3×3 neighbor-
hood surrounding the pixel with the central pixel’s intensity value, and treating
the subsequent pattern of 8 bits as a binary number (Fig. 1). A histogram of
these binary numbers in a predefined region is then used to encode the appear-
ance of that region. Typically, a distinction is made between uniform binary
patterns, which are those binary patterns that have at most 2 transition from
0 to 1, and the rest of the patterns. For example, 1000111 is a uniform binary
pattern while 1001010 is not. The frequency of all uniform LBPs is estimated,
while all non-uniform LBPs, which are typically around 10% of the patterns in
an image, are treated as equivalent and given only one histogram bin. The LBP
representation of a given face image is generated by dividing the image into a grid
of windows and computing histograms of the LBP values within each window.
The concatenation of all these histograms constitutes the image’s signature.

In this work we propose a patch-based descriptor that has some similarities to
a variant of LBP called Center-Symmetric LBP (CSLBP) [15]. In CSLBP, eight
intensities around a central point are measured. These intensities are spread
evenly at a circle every 45 degrees starting at 12 o’clock. The binary vector
encoding the local appearence at the central point, consists of four bits which
contain the comparison of intensities to intensities on the symmetric position
(180 degrees/ 6 hours difference).

Multi-block LBP [16] is an LBP variant that replaces intensity values in the
computation of LBP with the mean intensity value of image blocks. Despite the
similarity in terms, this method is very much different from our own. Multi-
block LBP is shown to be effective for face detection, and in our initial set of
experiments does not perform well for face recognition.
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Patch-based approaches in recognition As mentioned above, a patch based ap-
proach [5] provides state of the art capabilities in similarity learning of faces and
of general images. Other successful object recognition systems based on patches
include the hierarchical system of [17].

The ability to detect local texture properties by examining the cross cor-
relation between a central patch and nearby patches on both sides have been
demonstrated in the texture segmentation system of [18]. In [19] a central patch
was compared to surrounding patches to create a descriptor which is an extension
of the shape-context [20] descriptor. The resulting descriptor has been shown to
be highly invariant to image style and local appearance.

Improving descriptors by learning A large body of literature exists on the proper
way of learning classifiers and distances for face recognition. In this work, we
build upon basic classification methods, such as Linear Discriminant Analysis
and One-Vs-All Support Vector Machine [21], which is the simplest way to con-
struct multi-class classifiers out of binary SVM.

3 Novel patch based LBPs

The LBP descriptor and its variants use short binary strings to encode properties
of the local micro-texture around each pixel. CSLBP [15], for example, encodes in
each pixel the gradient signs at the pixel in four different angles. Here we propose
a family of related descriptors each designed to encode additional types of local
texture information. The design of these descriptors is inspired by the Self-
Similarity descriptor of [19]. Specifically, we explore different ways of using bit
strings to encode the similarities between neighboring patches of pixels, possibly
capturing information which is complementary to that of pixel-based descriptors.
Thus, employing patch based descriptors and pixel based ones in concert may
improve the over-all accuracy of a classification system.

3.1 Three-Patch LBP Codes

As its name implies, the Three-Patch LBP (TPLBP) code is produced by com-
paring the values of three patches to produce a single bit value in the code
assigned to each pixel. For each pixel in the image, we consider a w × w patch
centered on the pixel, and S additional patches distributed uniformly in a ring
of radius r around it (Fig. 2). For a parameter α, we take pairs of patches, α-
patches apart along the circle, and compare their values with those of the central
patch. The value of a single bit is set according to which of the two patches is
more similar to the central patch. The resulting code has S bits per pixel. Specif-
ically, we produce the Three-Patch LBP by applying the following formula to
each pixel:

TPLBPr,S,w,α(p) =
S∑
i

f(d(Ci, Cp)− d(Ci+α mod S , Cp))2i (1)
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Fig. 2. (a) The Three-Patch LBP code with α = 2 and S = 8. (b) The TPLBP code
computed with parameters S = 8, w = 3, and α = 2. (c) Code image produced from
the image in Fig. 1(b).

Where Ci and Ci+α mod S are two patches along the ring and Cp is the central
patch. The function d(·, ·) is any distance function between two patches (e.g., L2

norm of their gray level differences) and f is defined as:

f(x) =
{

1 if x ≥ τ
0 if x < τ

(2)

We use a value τ slightly larger than zero (e.g., τ = 0.01) to provide some
stability in uniform regions, similarly to [15]. In practice, we use nearest neighbor
sampling to obtain the patches instead of interpolating their values, as this
speeds up processing with little or no effect on performance.

Once encoded, an image’s signature is produced similarly to that of the
CSLBP descriptor [15]. The image is divided into a grid of none-overlapping
regions and a histogram measuring the frequency of each binary code is com-
puted for each such region. Each of these histograms are normalized to unit
length, their values truncated at 0.2, and then once again normalized to unit
length. An image is represented by these histograms concatenated to a single
vector.

3.2 Four-Patch LBP Codes

For every pixel in the image, we look at two rings of radii r1 and r2 centered on
the pixel, and S patches of size w×w spread out evenly on each ring (Fig. 3). To
produce the Four-Patch LBP (FPLBP) codes we compare two center symmetric
patches in the inner ring with two center symmetric patches in the outer ring
positioned α patches away along the circle (say, clockwise). One bit in each
pixel’s code is set according to which of the two pairs being compared is more
similar. Thus, for S patches along each circle we have S/2 center symmetric pairs
which is the length of the binary codes produced. The formal definition of the
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Fig. 3. (a) The Four-Patch LBP code. Four patches involved in computing a single
bit value with parameter α = 1 are highlighted. (b) The FPLBP code computed with
parameters S = 8, w = 3, and α = 1. (c) Code image produced from the image in
Fig. 1(b).

FPLBP code is as follows:

FPLBPr1,r2,S,w,α(p) =
S/2∑

i

f( d(C1i, C2,i+α mod S)−

d(C1,i+S/2, C2,i+S/2+α mod S))2i

(3)

The final image signature is produced by using the same two-step normalization
procedure described in Section 3.1.

4 Face same-not-same classification

The Labeled Faces in the Wild (LFW) dataset has two versions: the original
version and the funneled version, in which images are automatically aligned using
the method of [22]. In all of our experiments we use the funneled version only.
We plan to add the results on the original images in the future. There are also
two proposed pair matching benchmarks. We report results on the benchmark
protocol called “image restricted training”, for which public results are available
for the algorithm of [5] on the LFW web-site (http://vis-www.cs.umass.edu/
lfw/results.html).

The image restricted pair matching benchmark is a challenging one. It con-
sists of 6000 pairs, half of matching subjects and half not, which are divided into
10 equally sized sets. The benchmark experiment is repeated 10 times. In each
repetition one set is used for testing and nine others are used for training. The
goal of the tested method is to predict which of the testing pairs are matching,
using only the training data (the decision is done one pair at a time, without
using information from the other testing pairs).

We test the performance of descriptor based methods on this benchmark, and
focus on two questions: (1) How well do these methods perform compared to the

http://vis-www.cs.umass.edu/lfw/results.html
http://vis-www.cs.umass.edu/lfw/results.html
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average recognition rate of 0.7333 ± 0.006 obtained by the binaries of [5]; (2)
How can learning be applied to descriptor based methods in the pair matching
(same-not-same binary classification) setting.

4.1 Distance thresholding for pair matching

The most straightforward approach for pair matching using image descriptors
is to consider the distance between the vectors which encode the appearance of
the two images. i.e., given two face images I1 and I2 which are encoded using
some image descriptor g as g(I1), g(I2), the pairs are considered to match if
d(g(I1), g(I2)) < T , where d is a distance function and T is threshold.

The distance d can vary. We use the Euclidean distance and the Euclidean
distance applied to the square roots of the values in g(I1). The motivation for
the second distance is that our descriptor vectors consist mostly of histograms,
and applying square root prior to the distance calculations corresponds to the
Hellinger distance between probabilities [23].

In order to learn the threshold one can choose the threshold that gives the
highest recognition score on the 5400 examples of the training set. A method
that gives similar performance, and can be generalized to more than one distance
score per pair is to employ a binary Linear SVM. In the single distance case,
we train a SVM classifier on the 5, 400 one-dimensional vectors each containing
the distance between the two images of a pair. Then, this classifier is used to
predict whether the 600 test pairs are matching or not using similar 1D input
vectors. This experiment is repeated for the 10 train/test splits, and we record
mean recognition rate as well as the standard deviation of it.

A simple way to combine multiple image descriptors and multiple distances
is to create a vector of distances and run Linear SVM on this vector. Indeed, we
find that combining multiple distances together improves results considerably. In
Table 1 below, we report the recognition rate for the two distances (Euclidean,
Hellinger) and for each of the four descriptors: LBP, Gabor (C1), Three Patch
LBP (TPLBP) and Four Patch LBP (FPLBP). The Gabor descriptor is the
C1 descriptor of [24] used for face recognition in [9]. The parameters of the
other descriptors are given in the appendix. Note that other descriptors such as
CSLBP [15] and direct use of gray values did not produce good results and are
omitted. Table 1 also contains the combined result obtained by classifying the
vector of 8 distances at once using a SVM classifier.

As can be seen, a direct application of the distance function perform some-
what worse than the 0.7333 ± 0.0060 recognition rate achieved by the much
slower random-tree based similarity prediction [5]. The LBP based descriptions
perform similarly to one another, and the choice of distance does not change the
results significantly. The combination of all descriptors and distances improves
results beyond the best combination of a descriptor and a distance function.
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Table 1. Mean (± standard error) recognition rates on the funneled pair matching
benchmark of LFW (Image-Restricted Training, “view 1”). Each column represents a
different distance measure. Each row corresponds to an image descriptor. The last row
(“Combined”) corresponds to training a SVM on the vector containing the 8 distances.

Image Descriptor Euclidian Distance Hellinger Distance

LBP 0.6767 ± 0.0068 0.6782 ± 0.0063
Gabor (C1) 0.6293 ± 0.0047 0.6287 ± 0.0046
TPLBP 0.6875 ± 0.0044 0.6890 ± 0.0040
FPLBP 0.6865 ± 0.0056 0.6820 ± 0.0055
Combined 0.7062 ± 0.0057

4.2 Model learning for pair matching

In the distance based experiments, the training data was used in an improvised
manner to classify very small vectors after the distances were taken. How can
we use the training data to learn a matching score between pairs of descrip-
tor vectors? There is a vast literature on supervised learning of similarity or
of distance functions, e.g., [25,26,27]. We tried several of these methods us-
ing the DistLearnKit Matlab toolbox (http://www.cse.msu.edu/∼yangliu1/
distlearn.htm) and were unable to improve the classification accuracy.

An alternative learning framework is to consider the pair matching problem
as related to the problem of learning from one example (“one-shot learning”;
see [1] for a comparison of this problem and the unseen pair matching problem).
We learn a model of the person in the first image of the pair and try to classify the
second image. We then replace the roles of the images and repeat. The average
prediction of the two classifications is taken as the matching score.

Our procedure required two training sets: a set A containing face images that
is used for the negative examples during the one-shot learning, and a second
set B of matching and non-matching pairs, which is used to learn the decision
threshold as before. Given a pair of images, we vectorize them using an image
descriptor. We then train two classifiers by using either one of the two images
as the positive example, and the set A as the negative examples. Afterwards, we
apply each classifier on the other image of the pair and obtain a score. These
two scores are averaged to obtain a similarity score.

This process is repeated to all training image pairs of set B, and a threshold
on the obtained scores is learned using a SVM. Given a new test pair, we build
a one-shot classifier to each of the images using the same procedure and average
the two classification scores. We then apply the SVM threshold on the average
to obtain a prediction.

Since two classifiers need to be trained per training pair in set B, and since
the number of “negative” images (set A) may be large, using SVM to learn the
underlying one-shot classifiers may be computationally demanding if proper care
is not taken. Instead, we suggest using a Linear Discriminant Analysis (LDA)
classifier [28]. Note that due to the special structure of the problem, the LDA

http://www.cse.msu.edu/~yangliu1/distlearn.htm
http://www.cse.msu.edu/~yangliu1/distlearn.htm
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computation can be performed very efficiently. The within-class covariance ma-
trix is constant, depends only on the set A, and can be inverted once. Moreover,
the direction of the LDA projection can be obtained by extracting the lead-
ing eigenvector of a 4 × 4 matrix regardless of the dimensionality of the image
descriptors.

For the LFW image matching benchmark, we use in each repetition, out of the
nine training sets, one to construct the set A and eight for B. The single negative
image partition contains a total of 1,200 images. Note that none of the subjects in
the 1,200 images appears in the test set, since the LFW benchmark is constructed
to have the persons in the training and test splits mutually exclusive [1].

The results of the experiments are described in Table 2 Below. The descrip-
tors used are the same as in the direct distance learning experiments. Here again
we use either the original descriptor vectors, or their square root. In the latter
case, instead of using the vector g(I) we use

√
g(I).

The 8 descriptor/mode scores in the table are obtained by training SVM on
4, 800 (8 sets) 1D vectors containing the average of the two: the LDA projection
of the second image obtained using one-shot model learning of the first image
and the LDA projection of the first image obtained from the second model. The
“Combined” classification is based on learning and classifying the 8D vectors
which are the concatenations of the eight 1D vectors.

Table 2. Mean (± standard error) recognition rates on the funneled pair matching
benchmark of LFW (Image-Restricted Training, “view 1”) using the per image model
learning method. Each row corresponds to one image descriptor, and the columns rep-
resent the use of the original descriptor or of its square root. The last row (“Combined”)
corresponds to training a SVM on the vector containing the 8 prediction scores.

Image Descriptor Original Square Root

LBP 0.7343 ±0.0064 0.7463 ± 0.0048
Gabor (C1) 0.7112 ±0.0078 0.7157 ± 0.0076
TPLBP 0.7163 ±0.0082 0.7226 ± 0.0080
FPLBP 0.7175 ±0.0079 0.7145 ± 0.0078
Combined 0.7653 ± 0.0054

The results of LBP alone, using the model learning framework are similar
to the results obtained by the method of [5], which are the best results on
the benchmark known to us. The results of combining all 8 scores outperform
previous results significantly.

4.3 Hybrid method

A last experiment was done by combining the direct distance method and the
one-shot model-learning method. This was done by concatenating the 8 distances
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Fig. 4. ROC curves averaged over 10 folds of View 2 of the LFW data set. Each point
on the curve represents the average over the 10 folds of (false positive rate, true positive
rate) for a fixed threshold. The propose hybrid method is compare to the method of [5].

of the first method with the 8 scores obtained in the second method. The second
method provides predictions for only 4800 of the training pairs, and the SVM
classifier was trained on 4800 training 16−D vectors . A recognition rate of 0.7847
± 0.0051 is obtained, which is significantly higher than each of the other methods,
indicating that the distance base method and the model learning method employ
different aspects of the data. The ROC plot of the hybrid method is depicted in
Figure 4.

5 Face identification

Next, we evaluate the performance of the descriptor based methods and the
similarity approach of Nowak and Jurie [5] on the task of image classification.
To this end we use the LFW dataset, choosing only those subjects having enough
images to contribute for both “probe” and “gallery” sets. In our experiments we
use two images per person as probes and two as gallery. Thus, we employ a
subset of the LFW image set which consists of the 610 subjects having at least
four images. This subset contains a total of 6733 images.

The performance of the various methods as a function of the number of sub-
jects (N) was compared. We perform 20 repetitions per experiment. In each,
we select N random subjects and choose two random gallery images and a dis-
joint set of two random probes from each. Note that both N and the number of
repetitions were limited by the computational demands of [5].

In order to learn the similarity function of [5], matching and non-matching
pairs are required. We are not able to use the training pairs given with the LFW
benchmark (either “view 1” or “view 2”) since the images in those pairs and the
images in our train/test splits overlap. Therefore, in order to create independent
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training and testing sets we considered all subjects in the LFW database for
which there are no more than three images per subject. There are 5139 such
subjects (a total of 6500 images). From these images we extract the maximal
number of matching pairs – 1652 pairs, and 2000 randomly selected non matching
pairs. This training set is somewhat smaller than the data set of 5400 pairs (half
matching, half non-matching) used in the same/not-same experiments. Once a
similarity function is learned, given a probe image we compute its similarity to
each of the gallery images. The probe image is then classified by a winner-take-all
approach.

We test the following descriptors: LBP [11,12,13], CSLBP [15], C1 Gabor
descriptors [24,9], Image intensities, TPLBP, and FPLBP. In some experiments,
descriptors are combined by concatenating several descriptors into a single vec-
tor. Classification in the description based tests is performed by training a One-
Vs-All multiclass Linear SVM on the gallery images and using it to classify the
probe images one by one.

Fig. 5 (a) presents the performance of the three LBP variants (LBP, TPLBP,
FPLBP), as well as the performance of the combination of the three. Also shown
is the performance of the Gabor (C1) descriptor, and that of the method of [5]. To
remove clutter, we omit the CS-LBP and the direct image intensities descriptors
since they consistently under-perform the other descriptors. Adding Gabor to
the LBP descriptors did not improve performance and those results are also
omitted.

As can be seen, the similarity method of [5] outperforms the descriptor based
methods and their combinations. This comes at a price, however, as the testing
stage of the similarity based approach is more than an order of a magnitude
slower than that required for descriptor based classification. Moreover, the simi-
larity based approach uses a large data set for training, which was not utilized by
the descriptor based methods. A natural question now arising is how to modify
the learning stage of the descriptor based methods in order to make use of this
training set?

The learning algorithm we use is One-Vs-All SVM, in which for each subject
a SVM is trained using the subject’s gallery images as positive examples and all
other gallery images as negative examples. We modify this method such that an
extra set of negative training images is used for each binary classifier learned.
These additional negative training images are randomly selected form the set
of images used to train the similarity based method (see above). Hence the
descriptor based classifiers use no more training information than it is used for
the method of [5].

Figure 5(b) and Figure 5(c) present classification results with the additional
negative examples. As can be seen, the performance of the descriptor based
methods improves and several of the descriptor methods outperform the simi-
larity based approach. Classification time, however, did not change and remains
significantly lower than that required by the similarity based approach.

In order to estimate the effect of varying the number of gallery images per
person on the recognition rates, we have varied this parameter. Note that the
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Fig. 5. Classification results in the multiple-option identification test. The X axis
shows the number of classes (a-c) or the number of traninig examples per class (d).
The Y axis shows the recognition rate. (a) Training of the descriptor based methods
is done with no additional negative examples. (b) 100 additional negative examples
are used; (c) 1000 additional negative examples are added to the gallery images during
training. (d) performance, with no additional negative training images, as the number
of gallery images per class increases (100 classes). The method of [5] is omitted from (d)
since the running experiments did not finish in the time of submission. To avoid clutter
we refrained from adding error bars. The standard deviations are of the magnitude of
0.05 in all cases. For example, the recognition rate of LBP for 50 classes and no extra
negative examples 0.294 ± 0.0098

subset of the LFW dataset available becomes smaller as the number of gallery
images increased. The results are reported in Figure 5(d). No extra set of negative
images was used in this experiment.

6 Conclusions and future work

We evaluate the performance of a similarity-learning method in comparison to
descriptor based methods. The similarity based method performs well on both
pair matching and multiple option identification. Descriptor based methods,
while performing worse than the similarity learning method when applied di-
rectly, can be combined with appropriate learning techniques in order to make
better use of the training set and outperform the similarity based method.

There is still much work to be done. Some of the experiments are partial due
to the computational complexity of the similarity based method; for the same
reason, we were unable to conduct experiments on more than 100 classes. We
also wish to study the significance of image alignment to the descriptor based
methods. Finally, we are very interested in studying possible combinations of
similarity based techniques with descriptor based techniques.
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Appendix A: The parameters used in our experiments

Preprocessing For descriptor based methods, all LFW-funneled images used in our
tests were cropped to 110 × 115 pixels around their center. Following [15] we further
applied an adaptive noise-removal filter (Matlab’s weiner2 function) and normalized
the images to saturate 1% of values at the low and high intensities. The similarity
based method of [5] does not seem to benefit from the preprocessing stage, and we
employ it on the original images.

Descriptor parameters Some parameter tuning was done on “view 1” of the LFW

dataset, which is intended for such tests. Naive gray-level descriptors are produced by

rescaling the cropped and normalized images to half their original size, and sampling

all pixels. The image descriptors for all LBP variants are constructed by concatenating

histograms produced for 35 non-overlapping blocks of up to 23× 18 codes. To produce

the LBP descriptors we use the MATLAB source code available from [29]. Results are

obtained with “uniform” LBP of radius 3 and considering eight samples. The parame-

ters of the patch based LBP descriptors are r1 = 2, S = 8, w = 5 for TPLBP, and

r1 = 4, r2 = 5, S = 3, w = 3 for FPLBP.

http://www.ee.oulu.fi/mvg/page/lbp_matlab

