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Figure 1: Motion segmentation of dynamic point-cloud scenes. Given a dynamic scene of two people walking under a bridge
with their paths intersecting (left), we simulate its scan (mid-left) and compute its fg/bg segmentation. We adaptively refine the
decision border of our classifier (mid-right) resulting in an accurate motion (fg) separation (right).

Abstract

Segmenting a moving foreground (fg) from its background (bg) is a fundamental step in many Machine Vision
and Computer Graphics applications. Nevertheless, hardly any attempts have been made to tackle this problem
in dynamic 3D scanned scenes. Scanned dynamic scenes are typically challenging due to noise and large missing
parts. Here, we present a novel approach for motion segmentation in dynamic point-cloud scenes designed to
cater to the unique properties of such data. Our key idea is to augment fg/bg classification with an active learning
[framework by refining the segmentation process in an adaptive manner.

Our method initially classifies the scene points as either fg or bg in an un-supervised manner. This, by training
discriminative RBF-SVM classifiers on automatically labeled, high-certainty fg/bg points. Next, we adaptively
detect unreliable classification regions (i.e. where fg/bg separation is uncertain), locally add more training ex-
amples to better capture the motion in these areas, and re-train the classifiers to fine-tune the segmentation. This
not only improves segmentation accuracy, but also allows our method to perform in a coarse-to-fine manner,
thereby efficiently process high-density point-clouds. Additionally, we present a unique interactive paradigm for
enhancing this learning process, by using a manual editing tool. The user explicitly edits the RBF-SVM decision
borders in unreliable regions in order to refine and correct the classification. We provide extensive qualitative and
quantitative experiments on both real (scanned) and synthetic dynamic scenes.

Categories and Subject Descriptors (according to ACM CCS):
Generation—Digitizing and scanning

1.3.3 [Computer Graphics]: Picture/Image

1. Introduction

Recent advancements in scanning technologies, together
with increasing computational power, allow real-time ac-
quisition of 3D objects as they move and deform in time.
Systems such as [ZSCS04, KvG06] produce dense point
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samples over large parts of the surface of a moving ob-
ject, sampled at anywhere from ten to thirty frames per sec-
ond. As these technologies mature, they make it possible
to capture medium to large scale scenes containing mul-
tiple objects and their motions. Processing and modeling
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Figure 2: Pipeline 2D illustration of our algorithm. Given a scanned dynamic scene, we compute our training set using closest
distances between frame pairs (left), vielding a classification (mid). On the right, we compute the decision border (black line)
and manually deform it in unreliable regions (a), compute a new training set (b) and recompute our classifier (c).

the data captured by these scanners is a challenging com-
putational problem which is only just beginning to be ad-
dressed [MFO*07, WIH*07,PGO08].

An essential and particularly challenging problem within
the field of motion processing is the problem of consis-
tent foreground (fg) motion separation from the static back-
ground (bg). Such fg/bg segmentation tasks play key roles
in many computer graphics and vision applications, includ-
ing motion analysis, tracking, gesture recognition and ani-
mation. The particular problem of motion segmentation in
videos has been extensively addressed [WCO07, BEBV*10,
BHH11]. This problem is difficult as typically there ex-
ists no clear dichotomy to extract the foreground, which is
often highly entangled with its background. Additionally,
the background is not perfectly static due to noise, camera
movement and changes in illumination.

We transfer the motion segmentation problem to scanned
3D motion. Our problem domain is not only of higher
dimensionality than videos; dynamic 3D point-clouds are
complex and difficult to visualize and handle. Typically,
scanned dynamic scenes are acquired by a small set of syn-
chronized fixed cameras [PG08, LAGP09,LZW*09]. Due to
the limited number of views, large parts of the surface are
occluded, leading to gaping holes that often persist across
many frames. In addition, illumination variations and scan
noise generate flickering effects that cause inconsistent sam-
pling in time. Finally, 3D scanned data is typically sparse and
unstructured, lacking the underlying regular grid organiza-
tion which exists in 2D video. Thus, understanding and mod-
eling the static background in scanned dynamic scenes is a
very challenging problem even if accurate high-end scanners
are used (see Figure 1).

Segmentation problems are often solved using supervised
classification techniques, provided that reliably labeled ex-
amples of fg and bg are available for training. Of course,
manually labeling raw scans is infeasible, as they are com-
plex, sparse, and lack visual accessibility. In lieu of such
labels, we describe a novel classification system. It learns

the scene partition into fg/bg in an unsupervised manner, yet
provides natural means for adaptive and interactive segmen-
tation refinement.

Our work makes the following contributions:

o Definition of discriminative classifiers. Our method
sparsely samples the scene in space and time to produce
an initial, automatically labeled training set consisting of
points for which fg/bg labels can be determined with high-
confidence. These are used to train RBF-SVM [CV95]
classifiers which are then applied to label the entire scene.

e Adaptive refinement of classifiers. Sparse sampling,
along with possible mis-labeling of the training points,
can produce inaccurate classifiers. We describe an auto-
matic, adaptive process which re-samples the training-set
in a coarse to fine manner, refining the classification wher-
ever the segmentation is determined to be unreliable.

o Interactive learning by interactive decision-border
editing. We interpret the RBF-SVM classifier’s decision
boarder as a geometric surface in 3D. We describe a
unique interface, allowing users to modify the segmen-
tation by directly editing and manipulating this surface.
We show that editing of the decision border can be used
to re-train and refine the underlying classifier.

Our method is efficient, requiring a few minutes to pro-
cess even large scenes. In order to test our system we apply
it to both real (scanned) dynamic scenes, as well as synthetic
scenes with known ground-truth labels. We provide qualita-
tive and quantitative results demonstrating the accuracy of
our system, its robustness to sampling noise, and its effi-
ciency.

2. Related Work

Methods for motion segmentation have been extensively
studied in both the computer vision and graphics commu-
nities. To our knowledge, ours is the first work to consider
motion segmentation in dynamic, point-cloud scenes. Thus,

(© 2013 The Author(s)
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Figure 3: Motion segmentation of a real scanned dynamic scene of people walking through a door. Left-to-right, the scanned
input frames, the computed classifier yields a natural surface in 3D defining the decision border, resulting fg/bg segmentation

in green and red respectively, and finally the extracted motion.

we separately discuss motion segmentation in videos and 3D
dynamic scan processing.

Motion segmentation in videos. There has been immense
progress in foreground segmentation of videos since the
original frame-difference techniques in the late 70’s [JN79].
Generally speaking, existing approaches assume that the
background can be modeled statistically and use these mod-
els to extract the foreground. These methods use global
background models [LSS05, WBC*05,BS07, BM10,0B11]
and pixel-wise models [Ziv04, GA11, CJC12] which require
either a static camera or strong alignment of the video
frames. Similar to us, interactive segmentation has been
recently proposed by the SnapCut [BWSS09] and Live-
cut [PMCO09] systems. Theirs, however, were designed for
the underlying grid structure of images and videos. Recently
hand-motion tracking was computed by clustering the scene
flow into three predefined motion clusters using EM [HB12].

Few methods were developed to handle background mo-
tion induced by camera motion. These are often han-
dled by recovering and compensating for the camera ego-
motion [IRP94, RB96, MH00, HEO03, RCHO3] relying on
motion coherency to segment point trajectories [FP98,
KanO1, VMO04, SJK09], and modeling the non-static back-
grounds [MMPRO3, MP04, ZSXW12]. Our work is related
to the recent method of Han and Davis [HD12]; they used
classifiers to model background noise and dynamic textures.
Here we use a similar approach on dynamic 3D scans aug-
mented within an adaptive and interactive framework.

All the methods mentioned above operate on regular
grids, which allow fg/bg models to be assigned to specific,
integer, spatial coordinates (i.e. pixels). In contrast, our
method segments the moving points of a real-valued 3D
scene, where the absence of an underlying regular grid
raises the question of where in space-time these fg/bg
models should be computed.

Active learning. Our system bears some resemblance to “ac-
tive learning” techniques in machine learning. There, small
subsets of the training data, for which classification is unre-
liable or unknown, are identified and deferred as queries to
an oracle (typically, a human operator) for labeling. We refer
to [Set09] for a survey on this topic. Despite its popularity,
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only few methods have recently employed active learning
for image segmentation [VG09, SG10, VBF12, YWSC13],
Nevertheless, their extension to our domain remains unde-
termined.

Similarly to the active learning approach, we refine
classification by introducing additional training instances
wherever segmented points are close to a decision border.
This has long been an effective training of SVM classifiers
(e.g., [SCO0, TKO2]). Here, we automatically re-sample the
scene more densely, thereby introducing finer resolution
into the training set near such decision borders. We further
introduce the novel approach of interactive editing of the
decision border. Rather than having users manually label
new training points, as is typically performed in active
learning systems, we describe a novel interface allowing
users to directly manipulate the 3D surface of the decision
border. As far as we know, we are the first to propose such
interactive control over a classification system.

3D dynamic scans. In 3D scanned data, previous work has
focused on segmentation of static scenes. Their emphasis
is on extracting geometric primitives (such as in [UHO3]
and [RVDHVO06]) using cues such as normals and curvature.
Golovinski and Funkhouse [GF09] use graph-cut for seg-
menting static 3D scenes into foreground and background
elements.

Much of the attention in 3D dynamic-scan processing has
been focused on modeling of specific shapes such as humans
and garments where subjects are acquired independently
using controlled environments [ACP02, GKB03, ZSCS04,
DSK*05, WCF07, VB*10, LXL*12]. In real-world condi-
tions, however, it is practically impossible to capture a dy-
namic subject independently of its surrounding environment
and background. The methods proposed here may therefore
be considered as preprocessing, before applying these tech-
niques.

Anuar and Guskov [AG04] and Sharf et al. [SAL*08] use
flow techniques to estimate object deformation in the scene.
Pekelny and Gotsman [PGO08] introduce another method for
tracking a piecewise rigid articulated model. In all these
cases, however, a single foreground object is assumed, with
little or no sampling noise; a scenario very different from
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the one we handle here.

With the popularity of Kinect sensors, motion segmenta-
tion in dynamic range data has become an important prob-
lem. In [GBPGI12], depth and intensity data are fused to
generate dense trajectories for motion segmentation. The
KinectFusion system of [IKH*11] uses a moving Kinect
sensor and a GPU processor to reconstruct the 3D scene in
real-time. They segment the static background from fore-
ground motion by assuming that parts of the static scene
have been initially reconstructed. Our method does not make
such an assumption which is also infeasible in crowded en-
vironments.

Figure 4: Adaptive segmentation refinement in the door re-
gion of the scene from Fig. 3. The door is unreliable in terms
of segmentation as subjects pass very close to it. Without
adaptive refinement (left), top and side parts of the door are
incorrectly labeled as fg (in green). After adaptive refine-
ment (right), a majority of these labels are corrected.

3. Overview

Our input data is a sequence of 3D raw scans sampling a
dynamic scene over time. In particular, our data consists of
7D points P = {Pi}é\; = {(xi,y[,z,',u,-,vi,w,-,t[)}ﬁvzl where
Xi,yi,zi are real 3D coordinates in the scene, (u,-7v,-,w,-)T
is the measured normal of the surface at that spatial coor-
dinate, and ¢ is the integer frame index. We assume these
points were acquired by one or more synchronized scanners
positioned relatively still during the scanning process (e.g.,
steady hand-held). Our goal of separating foreground from
background can be stated as designing a function / for label-
ing each point p € P as belonging to the moving foreground
or the (semi-)static background. More formally we seek a
function /4, such that.

o ={ o

Our algorithm consists of the following major compo-
nents (see Fig. 2 for a 2D illustration of our pipeline):

if p € static background
if p € moving foreground

€]

1. Automatic, coarse segmentation. A small subset of
scene points is automatically labeled as belonging to ei-
ther fg or bg by considering points in frame-pairs and
assigning fg/bg labels based on their similarity (Fig. 2

(left)). To keep computation costs low, we compute la-
bels for only a small number of points, randomly sam-
pled in space and time. The labeled points are used to
train a statistically robust, RBF-SVM classifier which is
then applied to the whole scene.

2. Adaptive segmentation refinement. We augment the
seed training set by adding more samples wherever scene
points lie close to the fg/bg decision border. This ex-
panded training set is used to recompute the classification
model and re-segment the scene.

3. Interactive decision border editing. We provide an in-
terface which visualizes the SVM decision border as a
surface in 3D and allows its manual editing to correct
segmentation errors (Fig. 2 (right)). Following this edit-
ing interaction, the modified surface is converted back to
an RBF-SVM, and applied to the entire scene.

In the next section we provide details to these steps.

4. Technical details

Unsupervised motion segmentation. To compute motion
segmentation, we seek a function & (Eq. 1) that partitions the
whole 3D volume of the scene into two sub-volumes: a vol-
ume occupied by static objects, and a volume through which
dynamic objects pass. Thus, applying 4 to classify a point p,
equals to determining in which of the two sub-volumes the
3D coordinates of p lie (see Figure 3).

With this in mind, we design a system which parti-
tions the 3D scene into fg/bg using Gaussian, Radial Basis
Function (RBF), Support Vector Machines (SVM) [BGV92,
CHC*10]. We select the RBF kernel for its low computa-
tional costs in both training and testing and fewer numerical
instabilities than other non-linear kernels. Moreover, the de-
cision border produced by an RBF-Kernel SVM has a nat-
ural interpretation in 3D, which we employ in our system
(Sec. 4). These RBF-SVM are trained on a subset of scene
points, for which we compute label information.

Automatic training set labeling We begin by assigning a
small number of sample points from throughout the scene
(space and time) as either fg, bg, or unknown, using a conser-
vative and efficient decision criteria. While this step is often
manual in photos and videos, it is performed automatically
here, as manual labeling of point-clouds would be unrealistic
due to their complexity.

Labels are assigned by a modified frame-difference tech-
nique [JN79]. Specifically, given frame (point-set) F;; at
timer1, F;y = {p; = (xi,yi,zi, i, vi,wi, ti)|[t; = t1}, and frame
Fp = {pj = (xj,¥),2j,u,vj,wj,tj)|t; = 12}, at time 12, we
assign the labels FG for foreground, BG, for background,
and UN for unknown, by computing for each p; (p;):

FG ,if Vp;j € Fp2,dist(p;, pj) > OFc
L(p;)) =4 BG ,if 3p; € Fy,dist(p;, pj) <Oz (2)
UN , Otherwise

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Y. Sofer & T. Hassner & A. Sharf/ Interactive Learning for Point-Cloud Motion Segmentation

Figure 5: Coarse sampling of our training set can lead to an incorrect initial segmentation model with many mis-classifications
(left). Using a single adaptive step (right) reduces most of these errors (few mis-classifications still exist in the cone).

Here, dist is a distance function designed to reflect how
likely are the 7D points p; and pj to have been produced
by scanning the same static object in two different frames. A
point in £ is selected as fg if no point in F, is close enough
to be considered from the same object (see Figure 2(left)).
The two thresholds, g and Bg; were manually set to re-
flect the scale of the scene, but were otherwise not optimized
in our trials. We used the following values for these thresh-
olds: Opg = 10cm, and G = Scm (in scanner coordinates).

Our implementation uses the following distance function:

tlon ey = NGz (i)l if g > 09
dist(pi, pj) = { OuN , Otherwise

Where n; and n; are vectors of the normal components,
(u,v, w)T, of the points p; and pj, used here in order to con-
sider only points which have nearly identical normal direc-
tions; points with greater normal differences are filtered out
as being uncertain. In such cases, the constant value Oy,
0pG < OrG < By causes the distance to be ignored in Equa-
tion 2. We note that consequent to Equation 2, different ob-
jects moving at different speeds (or the same object moving
at different speeds in different times) would be labeled FG,
so long as the motion is faster than implied by Og.

A straightforward application of Equation 2 to all the
points in the scene would be impractical due to its compu-
tational cost. Each point in the scene would require a near-
neighbor search throughout all points in the matching frame.
This process is additionally susceptible to errors. Very often,
occlusions result in holes in the point-cloud, which cause
bg points p; € F;; to have no sufficiently near neighbors in
Fj» (see Figure 4). Conversely, when foreground points in
frame F;| are near background objects, they will find suf-
ficiently close background points in F;;, despite the object
having moved on by that time.

As a means of addressing these problems, we label only
a small, randomly selected subset of points in ¢1. In addi-
tion, we sparsely sample the pairs of frames by selecting ev-
ery k’th time-step as 71, and setting 12 = ¢1 + r. Thus, only
a small number of frames are evaluated and only a limited
number of high-confidence points are labeled as either FG
or BG, and used to train the RBF-SVM classifiers. Conse-

(© 2013 The Author(s)
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quently, training involves only modest computational costs.
In our implementation, we sampled one-in-five frames as ¢1
(k =5), with the gap from 2 being r = 11 frames. Finally,
only 10% of the points in 1 were randomly sampled and
used to compute the initial labels.

Adaptive segmentation refinement. Once training samples
have been selected and labeled, we train an RBF-SVM clas-
sifier (using 1ibSVM [CL11]) which is then applied to pre-
dict fg/bg labels for all the points in the scene. Specifically,
for each point p = (x,y,z,u,v, w,t)T, and x = (x,y, Z)T, we
compute the following decision value:

1
c= Z YiouK (xi,X) + b. 3)
i=1

Where K is the standard RBF-kernel, defined by K(xj,X;) =

exp(—y Hx, —Xj H2), v > 0. The value for y was automatically
set by 1ibSVM from a single real (y = 32) / synthetic (Y =
8) example, then used in all subsequent real/synthetic tests
respectively. / support vectors X; = (x,»,y,-,z,-)T were selected
from the sample set used for training, y; are their FG/BG
labels, represented by 1/-1 values (Eq. 2), oy, their weights,
and b is a bias term, all computed during training. The initial
fg/bg predicted labels are then determined by sign(c).

The cost of prediction (Eq. 3) is dominated by /, the num-
ber of support vectors selected during training. This, in turn,
is bound by the number of training instances, and is therefore
controlled by the sampling rate of frames and points in the
initial labeling step, above. By aggressively down-sampling
the points used for training, we can control prediction time,
but at a cost to the accuracy (see Figure 5).

To maintain low computational costs, without sacrificing
accuracy, we perform an adaptive refinement step, which au-
tomatically adds additional samples wherever the fg/bg seg-
mentation is considered unreliable. Specifically, we consider
points for which the decision value |c| < T (Eq. 3), as ly-
ing close to the decision boundary. Here, T is a threshold
value which was kept constant throughout our experiments,
its value manually set to T = Scm (in practice, point coor-
dinates in Eq. 3, are normalized to the range of [-1,1] and
the same normalization is applied to t.) Generally speak-
ing, these points were likely not have been included in the
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Figure 6: Interactive editing of the decision boundary surface in two dynamic scenes (top/bottom). Left column, is the automat-
ically computed separating surface, yielding incorrect labeling. Right column, the manually edited decision boundary yields a

correct classification of the fg/bg regions.

original training set. We now add them to the training by re-
peating, for each one, the same labeling process described in
Eq. 2. The resulting, expanded, training set is then used to
re-train the SVM classifiers. Figures 4, and 5 show the sig-
nificant improvement of applying a single refinement step
to an incorrect initial segmentation, resulting from over-
aggressive sampling of points.

Interactive decision border editing. The process described
so far is fully automatic, efficient, and as we show in Sec. 5,
robust to changes of parameter values. Yet, as noted by oth-
ers for related problems in images [BWSS09, PMCO09], it is
very often beneficial to provide means for human interaction
and manual refinement. Here, we develop a novel editing
framework to allow manipulation of the classification pro-
cess (see Figure 6).

We treat the fg/bg labels computed by the automatic pro-
cess, as the inside/outside labels for a Marching Cubes pro-
cess applied to the 3D coordinates of our scene points.
In our system, we used the Marching Cubes implementa-
tion of [Blo94]. This results in a 3D surface, represented
as a triangulated mesh, which reflects the fg/bg decision
boundary. Our system visualizes this surface, rendered trans-
parently, along with the scene points, in order to allow
the user to inspect the segmentation for any evident mis-
classifications. Beyond visualization, however, we allow this
surface to be manually manipulated. Specifically, a user can
select and move the decision border surface, using local thin-
plate splines deformations [DB02]. Thus, mis-classifications
are corrected, by moving the surface to desirable locations
where it better discriminates between fg/bg (Fig. 2(a)).

Following this manual surface adjustment, we revert back
to an RBF-SVM classifier and re-apply the modified classi-
fier to the points in the scene. To this end, We first produce a
new training set of points, reflecting the user-modified seg-
mentation (Fig. 2(b)). Let q = (x,y,z) be a vertex on the
(modified) surface. We note that the position of q may or
may not have been changed by the user. Regardless, q is not
a part of the scanned scene, but instead a point originating
from the Marching Cubes process. For each such q, we pro-
duce two points qoyut and qj,, Where qout (qin) 1S @ point at a
distance € away from q, along the (opposite) direction of the
surface normal at q. The points qeut and g, are then labeled
as either FG or BG, according to the original normal direc-
tion assignments (e.g., in our implementation, normals point
to the bg, and so qeut (qin) is labeled as BG (FG)). Once la-
beled, these points are used to train a new RBF-SVM model,
which is then reapplied to the scene (Fig. 2(c)).

5. Results

We evaluate our system on multiple dynamic scenes with
various complex motions. We have experimented with mo-
tions of one or more persons as well as various obstacles and
non-trivial motion paths.

Description of our input. We have acquired raw scans sam-
pling real dynamic scenes, using high resolution and frame-
rate scanners. In our setup, scanners were hand-held, rela-
tively still, or mounted on a tripod. We used either one or
two synchronizes scanners. Our equipment is the Mantis Vi-
sion, Active Light Scanner, with a spec of up-to 100k points
per frame and camera resolution of 640-480 pixels, at 45fps.

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 7: Robustness of our system for initial (blue) and automatically refined (red) segmentations. Performance is measured
as the percent of points correctly classified. We evaluate our method’s robustness with increasing sampling noise (a), camera
motion (b), varying point sampling rates (c) and temporal sampling rates (d).

Figure 8: Visualization of noise tests added to the scene in
Fig. 9. Left, after 4% noise in points positions, right 4% cam-
era motion (showing two subsequent frames in green and
red).

We additionally produced synthetic scenes with known
ground-truth segmentation (Fig. 1, and 9). These scenes con-
sist of complex motions, intersecting paths and various ob-
stacles. We applied a virtual scanner which samples these
scenes using a raycast-like method and generates 3D scans
which simulate real-world scanning.

Summary of our results. Various properties of some of our
scenes are summarized in Tab. 1 which also lists the run-
times of the two automatic steps of our system (coarse seg-
mentation and automatic refinement) and the accuracy of our
segmentation of the synthetic scene. Accuracy is measured
as the percent of scene points correctly classified as fg/bg.
Run-times were measured on a standard Lenovo Think Pad,
T420, with a 2.6 GHz CPU and 4GB of ram, running Win7.

Evident from Tab. 1 is that our process requires only few
minutes to compute accurate segmentations, even for scenes
containing millions of points. Also noteworthy is the signifi-
cant boost in accuracy due to the refinement step. Additional
tests on the synthetic scene of Fig. 9 were performed in or-
der to assess our system’s robustness. Fig. 7 shows accu-
racies before and after the automatic adaptive segmentation
step (in the final interactive step, any errors can be manually
corrected and so accuracy is considered perfect).

Fig. 7(a) provides an evaluation of our system’s tolerance
of simulated sampling noise. To this end, scene points were
moved in random directions progressively further from their
original positions, in order to simulate increasing amounts of

(© 2013 The Author(s)
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sampling errors due to measurement noise. Thus, the noisier
the samples, the further points will be from their ground-
truth locations. Here, noise rates are measured as percents
of the length of the diagonal of the scenes’s bounding box.
A 4% noise rate therefore implies substantial changes in the
positions of the scene points (Fig. 8). Clearly, with increas-
ing noise levels, the accuracy of the initial segmentation step
degrades, but the segmentation refinement step corrects any
such errors, and leaves the final accuracy mostly unaffected.

Fig. 7(b) shows our system’s accuracy for varying
amounts of camera motion (see Fig. 8). Motion was simu-
lated by moving and rotating the whole scene in randomly
selected directions and angles. Motion levels are again mea-
sured as in Fig. 7(a). Despite not being specifically designed
to handle camera motion, following automatic refinement
our method remains accurate in up to 2% camera motion.

In Fig. 7(c), we report accuracies for varying point sam-
pling rates. These range from 100% (i.e., Eq. 2 applied to
all points in the sampled frames) to the very aggressive rate
of 1%. Clearly, as fewer points are sampled, the accuracy of
the initial segmentation step drops. This, however, has little
effect on the final accuracy, obtained after the segmentation
refinement step. Finally, Fig. 7(d) demonstrates the effect of
varying the temporal sampling rate (the distance k between
consecutive frames ¢1). Lower rates have a moderate effect
on the accuracy, both after the initial segmentation and the
refinement step, though even when sampling one frame in
25, accuracy remains high.

Our results on both real and synthetic scenes are visual-
ized in Fig. 1, 3, 5, 9, and 10.

6. Conclusions

In this paper we develop a novel approach to adaptive and in-
teractive training of RBF-SVM classifiers, for the purpose of
motion segmentation of dynamic, point-cloud scenes. To our
knowledge, this is the first attempt to segment such scenes.
Our algorithm defines robust, discriminative classification
rules via unsupervised learning — without requiring manual
labeling and supervision. We observe that our classifier has a
natural, visual interpretations as a 3D surface, separating fg
from bg. Building on this observation, we propose a unique
interactive learning paradigm, allowing users to adjust clas-
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Figure 9: Motion segmentation of a synthetic, dynamic scene where a person moves around obstacles in a circular path.
Left-to-right, the synthetic, dynamic scene (frames overlaid), scanned point-cloud; automatically learned RBF-SVM motion
segmentation yielding a spiral-like separation; and finally the accurately segmented fg motion.

Figure 10: Two motion segmentations in real, scanned dynamic scenes. A person walking around a chair (top) and table
(bottom) in a room. Left-to-right are the dynamic point-cloud data; the automatically computed classifier yielding a separating
surface in 3D; resulting fg/bg segmentation colored green and red respectively; and finally, the extracted fg motion.

Table 1: Details of scenes and results. R/S signifies Real
(scanned) or Synthetic scene, tFrms, the number of time-
frames, and §Pnts, the total number of points in the scene
(all frames). Timel is the runtime of the initial, unsupervised
segmentation, in minutes, and % 1 is the percent of points it
accurately classified. Time2 is the runtime of the automatic,
adaptive step, and % 2 is the final accuracy. For the real,
scanned scenes no ground truth is available and so accu-
racy is not reported.

R/S #Frms  fPnts  Timel % 1 Time2 % 2
50 490k 1.5 52.4% 2.9 96.1%
50 1,350k 1.8 n/a 2.5 nl/a
265 9,275k 3.0 n/a 57 n/a

AR ®»

sification rules by manipulating these surfaces directly. We
show how to use the edited surface to efficiently update the
classifiers used for the segmentation. We evaluate the perfor-
mance of our proposed system on both real, scanned point-
cloud data, as well as synthetic scenes with ground-truth seg-
mentation. Our tests show this process to be accurate, effi-
cient and robust to the sampling noise, typical to such data,
as well as insensitive to various parameter selections.

Discussion and future work. The work presented in this pa-
per can be extended in two general directions. The first is by
exploring ways of improving the performance and accuracy
of our system. This, analogously to the evolving progress of
motion segmentation techniques designed for videos. One
particular issue which can be addressed is the propagation
of information between points. Specifically, consider cases

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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where objects are only partly stationary. This can be, for ex-
ample, a subject standing still while waving her hands. A
different example is a large planer surface moving in a direc-
tion perpendicular to its normal. In both cases, the proximity
of points can be exploited in order to propagate fg labels
(e.g., from the tips of the hands or the rims of the surface) to
points which are considered bg by Equation 2. Though such
cases are partially handled by our use of SVM classifiers, as
well as by manual label corrections, it would be interesting
to seek a more principled treatment.

We are additionally interested in improving the system’s
performance, with the specific goal of employing it in real-
time applications, such as surveillance. This would require
improving the processing speed, as well as fine-tuning the
systems accuracy in scenarios where manual interaction is
not possible (e.g., batch processing).

A second avenue for future work is exploring how motion
segmentation of point-cloud scenes can benefit subsequent
processing of such data. Example applications are point-
cloud scene compression and hole filling. By separating the
fg from the bg and aggregating BG labeled points from mul-
tiple frame, a single bg frame can be produced, and stored
only once, separately from frames containing the fg points.
This can potentially save storage (a single instance of the
bg, instead of one set of bg points for each frame), as well
as provide means of filling in the holes in the bg that result
from occlusions.

Finally, video understanding methods often rely upon an
initial motion segmentation step, prior to subsequent pro-
cessing [KGHW12]. Doing so for point-cloud data is also an
intriguing next step. This includes the development of meth-
ods for action recognition, person identification (e.g., “gait
recognition”) and more.
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