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Abstract

The One-Shot similarity measure has recently been intro-
duced in the context of face recognition where it was used
to produce state-of-the-art results. Given two vectors, their
One-Shot similarity score reflects the likelihood of each vec-
tor belonging in the same class as the other vector and not
in a class defined by a fixed set of “negative” examples.
The potential of this approach has thus far been largely un-
explored. In this paper we analyze the One-Shot score and
show that: (1) when using a version of LDA as the underly-
ing classifier, this score is a Conditionally Positive Definite
kernel and may be used within kernel-methods (e.g., SVM),
(2) it can be efficiently computed, and (3) that it is effective
as an underlying mechanism for image representation. We
further demonstrate the effectiveness of the One-Shot sim-
ilarity score in a number of applications including multi-
class identification and descriptor generation.

1. Introduction

The ability to compare two signals and decide if they
represent the same information is key to many Computer
Vision and Pattern Recognition tasks. For example, a typ-
ical Computer Vision problem is “Are two images portray-
ing the same object?” where different viewing conditions,
poses and other sources of variability are considered. There
are, of course, many methods for estimating such similar-
ities. Some use metrics (either “learned” from examples
or otherwise) to measure the distance between two signal
vectors. Others, such as the Discriminative Learning ap-
proaches, use labeled training sets to build models describ-
ing different signal classes.

Recently, the One-Shot Similarity (OSS) measure was
presented as an alternative approach [38]. OSS compares
two vectors by considering a single, unlabeled, negative ex-
ample set, and using it to learn what signals are considered
“different”. Given two vectors, their OSS score is computed
by first learning a model for each vector, discriminating it
from this set of negative examples. These models are then
used to determine if each vector shares the same label as
its counterpart or belongs with the set of negative examples.
The average of these two prediction scores is the OSS score
for the two vectors.

This approach has several advantages. On one hand,

unlike straightforward measurement of distances between
vectors, the OSS uses Discriminative Learning to explic-
itly build models which underscore the differences between
them. On the other hand, unlike standard Discriminative
Learning approaches, labeled training data is not required
(but may well be useful if available). Moreover, the discrim-
inative models are produced per the vectors being compared
and so are often better suited to comparing them.

The OSS has already shown promising results in the im-
age “pair-matching” problem [38]. Here we further analyze
this measure and provide the following contributions:

1. We show that the OSS measure, when built on top of
a variant of the Linear Discriminant Analysis classi-
fier, is a conditionally positive definite (CPD) kernel.
It can therefore be used directly with translation in-
variant kernel methods such as SVM and kernel PCA,
or give rise to a positive definite kernel (PD) that can
be used with any kernel-method.

2. We demonstrate how, employing pre-processing, the
OSS scores can be computed efficiently.

3. We show how the OSS score may be used as a mecha-
nism for image representation, by applying it within a
random sub-window scheme.

4. Finally, we provide empirical results, both quantitative
and qualitative, demonstrating the performance of OSS
scores for image pair-matching as well as multi-class
identification problems.

In the next section we review related methods. In Sec-
tion 2 we formally define the OSS measure and demonstrate
how it may be computed efficiently. We analyze the OSS
similarity in Section 3. Experiments are reported in Sec-
tion 4. We conclude in Section 5.

1.1. Related work

The literature on similarity functions, their design and
applications, is extensive. Some of the similarity measures
proposed in the past have been hand crafted (e.g., [2, 40]).
Alternatively, a growing number of authors have proposed
tailoring the similarity measures to available training data
by applying learning techniques (e.g., [3, 9, 16, 34, 37, 39]).
In all these methods testing is performed using models (or
similarity measures) learned beforehand, whereas the OSS



score proposed here learns discriminative models exclusive
to the vectors being compared.

We note that our algorithm in effect combines multiple
classifiers. It does so, however, in a manner which is some-
what different than algorithms such as “Bagging” (e.g., [6]):
in our case, classifiers are trained not with a subset of the
original training set, but with a combination of one training
example and a separate auxiliary set.

In this paper we show that for the existing implementa-
tion of the OSS in the literature [38], which uses LDA, the
OSS measure is not a positive definite (PD) kernel, however,
it empirically behaves as a conditionally positive definite
kernel (CPD) [32], and a simple variant of it is a CPD. CPD
kernels are important as they may be used directly, or once
converted to PD kernels, in a wide family of classification
and clustering tools [33]. In particular, popular classifica-
tion methods such as SVM may use conditionally positive
definite kernels as substitutes for vector inner-products as
measures of similarity.

We present results for image classification using ran-
domized sub-windows with OSS as the similarity score be-
tween image representations. This approach is motivated
by existing methods for estimating the visual similarity
of images. The method of [29], for example, uses Ran-
domized Decision Trees [14] and Support Vector Machines
(SVM) [8] to measure the similarity of two images. In their
framework, image patches are selected at random from one
image and then the most similar nearby patches are selected
from the other image. An SVM classifier is then used to
determine if the two images match by aggregating over all
selected patches the output of pre-trained random decision
trees. A similar method was used also for image classifica-
tion in other domains [26, 27].

2. Definition of the OS similarity

The One-Shot Similarity measure draws its motivation
from the growing number of so called “One-Shot Learning”
techniques; that is, methods which learn from one or few
training examples (see for example [1, 11, 12, 17]).

To compute the OSS score for two vectors z; and x; we
use a set A of “negative” training examples. These are vec-
tors which have different labels (identities) from those we
wish to compare. The symmetric One-Shot score is then
computed as follows (see also Fig. 1). We first learn a
model using A as a set of negative examples and x; as a
single positive example (hence the term “One-Shot”). We
then use this model to classify x;, obtaining a classifica-
tion confidence score, Scorel. The particular value of this
score depends on the classifier used. Using linear SVM as a
classifier, for example, this value can be the signed distance
from the separating hyperplane. Intuitively, this value gives
us a measure of how likely x; is to belong to the same class
as x;, given the one-shot training. This exercise is then re-

One-sShot-Similarity (x;, x;, A) =
Modell train(x;, A)

Scorel = classify(x;, Modell)

Model2 train(xj, A)
Score2 = classify(x;, Model2)

return % (Scorel+Score?)

Figure 1. Computing the symmetric One-Shot Similarity score for
two vectors, x; and z;, given a set A of negative examples.

peated, switching the roles of x; and x;, providing us with
a second prediction score, Score?2. Finally, the One-Shot
similarity score of x; and x; given A is the average of these
two scores. A one-sided score can be computed by learning
a classifier for only one of the two vectors.

The computational cost of computing the OSS score de-
pends on the particular classifier used. In particular, as we
show below, the special structure of the learning problem
can be exploited to reduce the computational complexity.

2.1. OS similarity with LDA

The Fisher Discriminant Analysis (FDA or LDA) [13,
15], is a well known learning algorithm that has been reg-
ularized, e.g. [24], to deal with small sample size, and ker-
nelized [28] to deal with non-linear decision rules.

We employ LDA within the OSS scheme since it can be
efficiently computed by exploiting the fact that the set A of
negative examples is used repeatedly, and that the positive
class, which contains just one element, does not contribute
to the within class covariance matrix. We can consequently
show that LDA based OSS can be directly computed in
O(d?) operations, where d is the dimension of the vector
space in which examples reside. Moreover, O(d?) opera-
tions are only required on the first time a vector is compared
to another. Repeated comparisons are O(d), i.e., at the order
of magnitude of simple correlations.

We focus on the binary LDA case, which is the one of
importance here. Let p; € R? i = 1,2,...,m; be a set of
positive training examples, and let n; € R, i = 1,2,...,ms
be a set of negative training examples. Let u be the average
of all points and (i, (resp. () be the average of the posi-
tive (negative) training set. Two matrices are then consid-
ered [10], Sp which measures the covariance of the class
centers, and Sy which is the sum of the covariance matri-
ces of each class.

Sp = (N;n - Nn)(ﬂp - .Un)T
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The LDA algorithm computes a projection v which maxi-
mizes the Raleigh quotient:
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In the two class case, v is easily determined since S is

a rank one matrix whose columns and rows are spanned by
(ttp — fn), we therefore get:

SIJ/FV(NP — Hn)
= " 3)
U IS G — )]

Note that we use the pseudo-inverse Sy instead of the
inverse Sv_Vl in order to deal with cases where the within-
class covariance matrix is not full rank. This is equivalent to
requiring in Eq. 2 that v be spanned by the training vectors.

Once the projection direction has been computed, the
classification of a new sample 2 € R? is given by the sign
of v’z — vy, where vg is the bias term (see below).

In the One-Shot case, the positive set is composed of one
vector p; = x; (x;), and the negative set is A. The positive
set does not contribute to the within class covariance, and
Sy (and hence S{,"V) depends only on A, is constant, and
need only be computed once. Similarly, the average of the
negative set y,,, which we refer to below as ;14 to empha-
size its dependent on A, need only be computed once.

Previously [38], OSS was computed using the midpoint
between the projected means of the classes as the bias value.
i.e., in the first stage of the OSS computation (Fig. 1), where
x; is used as the positive set, and A as the negative set of
LDA, we get:

TTi+paA

—
This specific choice is somewhat arbitrary. While it can be
justified by employing assumptions on the class prior distri-
butions and the variance of the positive class, these assump-
tions are unlikely to hold. However, in order to eliminate
the need for further parameters, we adopt these bias terms
for our experiments as well.

To summarize, when using LDA as the underlying clas-
sifier, the One-Shot Similarity between samples x; and x;
given the auxiliary set A becomes:
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The overall complexity for the one shot similarity per
pair is thus O(d?) once the (pseudo) inverse Sy, has been
computed. Note that if similarities are computed for the
same point repeatedly, one can factor the positive definite
Sy, = HH T and pre-multiply this point by the factor H.

2.2. OS similarity with free-scale LDA

The LDA formalization is based on a projection direction
given v in Eq. 3. The free-scale LDA is a simplified version
in which the projection is replaced with a dot product with
the unnormalized vector v = Sy}, (11, — p1,,). The bias term
vg is computed similarly to LDA (Eq. 4 above).

For binary classification problems, LDA and free-scale
LDA produce similar results (the sign does not change).
However, in the computation of OSS the pre-threshold pro-
jection value plays a role, and the similarities based on
the two classifiers differ. Specifically, similarities will be
larger in magnitude (positive or negative) if x; — 4 has
a large magnitude, i.e., in cases where x; is distant from
4. This agrees with the intuition that similarities are more
pronounce where the one-sample positive class (z;) is well-
separated from the negative class (the columns of A).

The OSS based on free-scale LDA is expressed as:
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2.3. OS similarity with SVM

The computation of OSS based on SVM also benefits
from the special structure of the underlying classifications.
Consider the hard-margin SVM case. In this case the sin-
gle positive example becomes a support vector. The maxi-
mum margin will be along the line connecting this point and
the closest point in set A, which serves as the negative set.
Therefore, the two SVM computations per similarity com-
putation are trivial once the points closest to z; and z; in A
are identified. Such simple geometric arguments, which are
used in some modern SVM solvers, e.g., [4], fail to work in
the soft margin case, and efficient computation for this case
is left for future research.

3. Analysis of the OS similarity

OSS is defined, given a binary classification algorithm
and a set A, between every two vectors of appropriate di-
mensionality. From its construction it is symmetric, but is it
positive definite (PD)? We next show that:

1. The One-Shot similarity is not generally a PD or a
Conditional positive definite (CPD) Kernel.

2. For free-scale LDA, OSS is indeed a CPD kernel.

3. Thus, for free-scale LDA the exponent of the OSS is a
PD Kernel.

We begin with the basic definitions.



Definition 1 (Positive definite kernel). Let X be a non-
empty set. A symmetric function k : X x X — R for which
forallz; € X, m € N, and ¢ € R™ satisfies c"Ke >
0, where K € R™ ™ isthe matrix K;; = k(x;,x;), is
called a positive definite (PD) kernel.

The definition of a conditionally positive definite kernel
(CPD) [32] places an additional restriction on the vector c:

Definition 2 (Conditionally positive definite kernel). A
symmetric function k : X x X — R for which for all m €
N, z; € X, and vectors ¢ € R™ such that ZZ’;I c; =0,
we have ¢ K¢ > 0, where K is as in Definition 1 above, is
called a conditionally positive definite (CPD) kernel.

CPD kernels can be used directly in translation invariant
kernel-methods [32], specifically within SVM [5]. More-
over, as Prop. 1 below shows, PD kernels can be readily
constructed from CPD kernels.

Proposition 1 (Theorem 2.2 of [7]). k(a,b) is a condition-
ally positive definite kernel iff k' (a,b) = exp(tk(a, b)) is a
positive definite kernel for all t > 0.

OSS similarity based on SVM or LDA is not a PD nor
a CPD kernel. This is verified by numeric simulations that
show that the point-wise exponent of the resulting similarity
does not give rise to a PD kernel. However, OSS based on
free-scale LDA is a CPD kernel as shown below.

Proposition 2. The OSS based on free-scale LDA (Eq. 6) is
a CPD kernel.

Proof. This similarity measure can be broken down into
terms and rearranged as a sum of two kernels K1 and K2,
which are defined as

K1 = (x; — pa) 'Sy (x5 — pa)
K2=(z; — pa) " Sy (2 — pa)—
$((@s — pa) TS (i — pa) + (x5 — pa) TS (25 — pa))

K1 is aPD kernel, and thus a CPD kernel. K2 has the form

s(x; — pa, o5 — pa)—
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Note that the derivation in Prop. 2 provides more in-
sights into the structure of the free-scale LDA based OSS.
In the vector space that contains the original vectors trans-
lated such that u4 = 0, and in which the inner product
(zi,25)" = (Syyxi, ;) is employed, this similarity is given
by the inner product (/;) minus the corresponding squared
distance (K>5).

4. Experiments

We next demonstrate not only the effectiveness of the
OSS measure, but also its versatility. We apply OSS as a
kernel basis used with SVM, directly as a similarity mea-
sure, and as the building block for an image representation.

4.1. Insect species identification

We test the performance of the OSS as an SVM ker-
nel for multi-label image classification. Our goal here is
to identify the species of an insect appearing in an image.
We used the Moorea Biocode insect image collection [21]
containing 6, 162 images and available from the CalPhotos
project website [20] (See Fig. 2).

In our tests we use standard Bags-of-Features (BoF) to
represent the images [35]. We used the Hessian-Affine ex-
tractor and the SIFT [25] descriptor code made available
by [22] to produce descriptors. Descriptors were then as-
signed to clusters to form the BoF representations using the
20k clusters learned from the Flickr60k image set [22].

We tested classification rates with 5, 10, and 50 insect
classes selected at random from those having at least four
images. Two image descriptors were selected from each
class as probe and two as gallery images. We compare the
performance of the following classifiers (Table 4.1).
Nearest Neighbor. For each probe, class identity is the la-
bel of the L2-nearest gallery BoF.
1-vs-all multi-class SVM. We train one SVM classifier per-
class using only gallery images for training: Each classifier
is trained using the gallery images of one class as positive
examples and the remaining images as negative examples.
A class label is selected based on the highest classification
score obtained by any of these classifiers. Linear, Gaussian,
and x? SVM kernels are reported. The margin parameter



Figure 2. Examples of insect images from the Moorea Biocode collection [20, 21].

(“C”), and the kernel parameter were searched over a wide
range using cross validation on the training set.

1-vs-all linear SVM with additional negative examples.
Following [38], we add to the training of each SVM classi-
fier an additional negative examples set A, which contains
the 2,778 images that have no species label and those 107
images belonging to classes with fewer than four images.
RCA followed by 1-vs-all linear SVM. RCA [34] is
trained on A and applied to the data prior to classification.
The reported results are the best obtained over a large range
of dimensionality reduction parameter tried out (“r”’). Here,
and in the next item (“LDA then SVM”) below, the group-
ing to classes was done based on the image label which con-
tains either the biological order, family or species.

LDA followed by 1-vs-all linear SVM. The set A was used
to compute the projection directions of multiclass LDA.
Then, linear SVM was used as a classifier. Note that vari-
ants where LDA is followed by Guassian SVM, Nearest
Neighbor, or by assigning to the nearest class center per-
formed far worse in our experiments (same holds for RCA).
1-vs-all SVM with OSS kernel. We use LDA or free-scale
LDA as the OSS classifier and the same set A. We then em-
ploy either the resulting similarities as the kernel function,
or the kernel function which is the exponent of 1/50 times
the OSS score. Hence, we have four kernel functions which
are then used as the kernel of a 1-vs-all multi-class SVM.

Table 4.1 shows that SVM classifiers with OSS kernels
outperformed other classifiers. This is especially true when
using the exponential forms. These tests also imply that
although OSS with the LDA classifier is not strictly condi-
tionally positive definite, it can still be used as a kernel for
SVM classification. Additional experiments (not shown)
demonstrate that performance seems stable for a wide range
of exponent values for the OSS, with no change in perfor-
mance observed for values between 10~ and 1074,

A note regarding statistical significance. Each experi-
ment in this paper was repeated with the same training and
testing split among all training examples. While the vari-
ance is sometimes high due to the nature of the datasets, all
experiments showing improved results of OSS kernels com-
pared to other method were tested using paired t-tests and
shown to be significant at p < 107>,

4.2. Pair-matching using randomized subwindows

The image pair-matching (“same-not-same’) problem is
defined as follows. Given a training set of image pairs, la-
beled either “same” (both images portraying the same ob-

ject) or “not-same” (two images of different objects), the
goal is to classify novel image pairs as either similar or not.
The Labeled Faces in the Wild (LFW [19]) image set was
designed as a benchmark for this test. The images in this set
contain faces of people detected in on-line news photos.

The LFW data set provides two pair matching bench-
marks. We report results on the protocol called “Image Re-
stricted Training”, for which public results are available on
the LFW web-site!. This benchmark consists of 6,000 pairs,
half of which are labeled “same” and half not, partitioned
into ten equally sized sets. Each experiment is repeated ten
times, using one set for testing and nine others for training.
The goal is to predict which of the testing pairs are match-
ing, using only the training data.

We align image pairs using a commercial face alignment
software. Each image pair is then represented by randomly
selecting 1,000 image coordinates and sampling patches
of normally distributed sizes, varying between 10 x 10 to
20 x 20 pixels. We then compute the similarities of cor-
responding patches comparing the performance of straight-
forward L2-norm and OSS. In the latter case, for each of the
10 repeats, we use one of the nine training splits to produce
a set of negative example for each patch. Finally, the image
pair is represented by a vector containing 1,000 OSS, one
for every patch pair.

Our same-not-same classifier is a binary, linear SVM
trained on the eight remaining training splits, each contain-
ing image pairs represented as described above. Note that
the splits are designed to be mutually exclusive and so sub-
jects used for the negative set A cannot appear in the sets
used for training the SVM and testing.

The pair-matching scores obtained by computing patch
distances using L2-norm and OSS are 0.6872 (standard er-
ror, SE, of 0.0059) and 0.7637 (SE of 0.0065) respectively.
Thus, the OSS considerably outperforms the SSD similar-
ity. ROC curves comparing these and other methods are
presented in Fig. 3. A Comparison to published results indi-
cates that the OSS applied to random sub-windows outper-
forms every single descriptor method in [38], and any other
published system, except for the multi-descriptor, multi-
similarity measure, “hybrid” method of [38]. Note that the
best score reported in [38] for a single descriptor was ob-
tained by using OS similarities between LBP descriptors.
This score was 0.7463 (SE of 0.0048), considerably less
than what we get here, also using only LBP and OSS. For
brevity, we omit from the ROC plots other benchmarks al-

http://vis—www.cs.umass.edu/lfw/results.html



Method

5 10 50

Nearest Neighbor
1-vs-all Linear SVM
1-vs-all Gaussian SVM
1-vs-all x2 SVM

0.2750 £ 0.1372  0.1725 £ 0.0550 0.0530 £ 0.0258
0.3300 £ 0.1418 0.2500 £ 0.0918 0.1140 £ 0.0272
0.2800 £ 0.1473  0.1875 £ 0.0510 0.0680 £ 0.0226
0.3600 £ 0.1635 0.2575 £ 0.1017 0.1025 £ 0.0281

1-vs-all SVM with extra neg. examples

0.4100 £ 0.1629 0.2625 £ 0.1398 0.1270 £ 0.0266

RCA followed by 1-vs-all SVM
LDA followed by 1-vs-all SVM

0.3850 £ 0.1538 0.3000 £ 0.1046 0.1335 £ 0.0283
0.3800 £ 0.1795 0.2300 £ 0.1069 0.0945 £ 0.0221

1-vs-all SVM with LDA OSS kernel
1-vs-all SVM with free-scale LDA OSS kernel
1-vs-all SVM with exponential LDA OSS kernel

1-vs-all SVM with exponential free-scale LDA OSS kernel

0.3900 £ 0.1447 0.2875 £0.1134 0.1285 £ 0.0281
0.3250 £ 0.1209  0.2425 £ 0.0963 0.1110 £ 0.0261
0.4300 £ 0.1559 0.3075 £ 0.1398 0.1430 £ 0.0301
0.4400 £ 0.1501 0.3200 £ 0.1271 0.1380 £ 0.0302

Table 1. Classification performance and standard errors for the insect identification experiments. Each experiment was repeated 100 times,
and the average recognition rate and the standard deviation of the rate are reported. Columns represent the number of insect classes.

gorithms that did not perform well: an analog construct with
LDA, using the same set A (with the extra label informa-
tion), performs worse than the L2-norm (0.6683 £ 0.0053);
RCA does not perform better in this task (0.6588 £0.0057).

4.3. Multi-person identification using OSS kernels

We next repeated the classification tests from [38] on the
LFW data set, this time comparing the performance of their
1-vs-all classifier (with 1,000 extra negative examples), to
that of 1-vs-all SVM with an OSS kernel and LDA as the
underlying OSS classifier. We use only subjects having
enough images to contribute to both “probe” and “gallery”
sets. Taking two images per person as probes and two as
gallery, we thus employ a subset of the LFW image set con-
sisting of the 610 subjects having at least four images. This
subset contains a total of 6733 images. For the negative set
A we take 1,000 images selected at random from individu-
als having only one image. All our images were aligned us-
ing a commercial face alignment software and represented
using the LBP descriptor [30, 31].

We compare the performance of the two methods as a
function of the number of subjects IV, testing 5, 10, 20, and
50 subject identities. We perform 20 repetitions per exper-
iment. In each, we select NV random subjects and choose
two random gallery images and a disjoint set of two random
probes from each. The results reported in Table 4.3 indicate
that using OSS as the basis of a kernel matrix outperforms
the use of the extra negative examples as part of the nega-
tive training in a 1-vs-all multiclass classification scheme,
as was done in [38]. Note that RCA is irrelevant to this
scenario since the set A contains no groups (“chunklets”).

4.4. Visualization of OSS distances

In Fig. 4 we visualize the performance of the OSS as
a distance function, applied to face images from the LFW
dataset. We compare the OSS measure to the standard Eu-
clidean norm between vectors. We picked, at random, five

individuals from the LFW set having at least five images
each, and five images from each individual. Dissimilarities
between all 300 pairs of LBP encoded images were then
computed using both the Euclidean norm and OSS scores.
The negative training set A for the OSS scores consisted of
1,000 images selected at random from individuals having
just one image each. The images were then positioned on
the plane by computing the 2D Multidimensional-Scaling
of these distances (MATLAB’s mdscale function).

The LFW data set is considered challenging due to its
unconstrained nature. Not surprising, no method achieved
perfect separation. However, both OSS scores appear to
perform better at discriminating between individuals than
the Lo similarity.

5. Conclusions

It is a consensus that collecting unlabeled images in a
specific domain is much easier than collecting labeled ones.
Therefore, methods that can employ unlabeled data to im-
prove the learning process of labeled examples are valuable.
Indeed, much work has been done in this domain. Examples
include methods which learn better image representations
(e.g., codeword learning schemes) based on unlabeled data,
and methods that are able to learn more effectively by em-
ploying unlabeled data (semi-supervised learning).

Here we are able to show that the OSS is versatile — it can
be used to learn better image representation, as is done in
the random sub-windows experiment, it can be used directly
as a similarity measure, and it can be used as the basis of a
kernel which is employed within SVM.

As shown, when employed with LDA or SVM the OSS is
not a PD nor a CPD kernel. However, experiments with the
kernel which is the exponent of the LDA OSS score demon-
strate that in practice it behaves well. A simple variant of
the LDA OSS is shown to be CPD, and performs equally
well in the experiments.
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(false positive rate, true positive rate) for a fixed threshold. Left: Full ROC curve. Right: A zoom-in onto the low false positive region.
The methods shown are: classical Eigenfaces [36], combined nowak+Merl system [18], Merl face recognition system [23], the randomized
trees approach of [29], Hybrid descriptor based method [38], and our random-patch based representation using both SSD and OSS scores.

Method

5

10

20

50

Nearest Neighbor
1-vs-all Linear SVM
1-vs-all Gaussian SVM
l-vs-all x2 SVM

0.5750 £ 0.1333
0.5500 £ 0.1147
0.5950 + 0.1099
0.6100 £ 0.1119

0.4300 £ 0.0979
0.4875 £ 0.1099
0.5200 £ 0.1174
0.5250 £ 0.0939

0.4913 £ 0.0808
0.5462 £ 0.0808
0.5037 £ 0.0694
0.5737 £ 0.0845

0.3430 £ 0.0405
0.4005 £ 0.0426
0.3410 £ 0.0509
0.4585 £ 0.0522

1-vs-all SVM with extra neg. examples

0.8050 +£ 0.1050

0.7175 £ 0.0783

0.5938 £ 0.0980

0.4520 £ 0.0473

LDA followed by 1-vs-all SVM

0.6050 £ 0.1146

0.5750 £ 0.1118

0.6150 £ 0.0916

0.4925 £ 0.0518

1-vs-all SVM with LDA OSS kernel

1-vs-all SVM with exp LDA OSS kernel
1-vs-all SVM with exp FS LDA OSS kernel

1-vs-all SVM with free-scale LDA OSS kernel

0.7850 £ 0.1268
0.7550 £ 0.1432
0.8150 £ 0.1226
0.8250 £ 0.1164

0.7300 £ 0.0785
0.7300 £ 0.0768
0.7225 £ 0.0716
0.7225 £ 0.0716

0.7063 £ 0.0802
0.7000 £ 0.0782
0.6900 £ 0.0758
0.6863 £ 0.0737

0.5865 £ 0.0431
0.5855 £ 0.0365
0.5790 £ 0.0412
0.5800 £ 0.0450

Table 2. Classification performance and SE for the person identification experiments. Columns represent the number of subjects (classes).
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Figure 4. Visualizing Euclidean distance vs. OSS scores for LFW images. Images positioned according to pairwise Euclidean distances
(left), OSS with LDA scores (middle), and OSS with free-scale LDA scores (right). Color frames encode subject IDs.
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