
LATCH: Learned Arrangements of Three Patch Codes

Gil Levi
The Open University of Israel

gil.levi100@gmail.com

Tal Hassner
The Open University of Israel

USC / Information Sciences Institute
hassner@openu.ac.il

Abstract

We present a novel means of describing local image ap-
pearances using binary strings. Binary descriptors have
drawn increasing interest in recent years due to their speed
and low memory footprint. A known shortcoming of these
representations is their inferior performance compared to
larger, histogram based descriptors such as the SIFT. Our
goal is to close this performance gap while maintaining the
benefits attributed to binary representations. To this end we
propose the Learned Arrangements of Three Patch Codes
descriptors, or LATCH. Our key observation is that exist-
ing binary descriptors are at an increased risk from noise
and local appearance variations. This, as they compare
the values of pixel pairs: changes to either of the pixels
can easily lead to changes in descriptor values and com-
promise their performance. In order to provide more ro-
bustness, we instead propose a novel means of comparing
pixel patches. This ostensibly small change, requires a sub-
stantial redesign of the descriptors themselves and how they
are produced. Our resulting LATCH representation is rig-
orously compared to state-of-the-art binary descriptors and
shown to provide far better performance for similar compu-
tation and space requirements.

1. Introduction
The ability to effectively represent local visual informa-

tion is key to a very wide range of computer vision appli-
cations. These applications range from image alignment,
which requires that local image descriptors be accurately
matched between different views of the same scene, to im-
age classification and retrieval, where massive descriptor
collections are repeatedly scanned in order to locate the
ones most relevant to those of a query image. Consequently,
computer vision research has devoted substantial efforts to
develop and fine-tune these representations.

At the core of the problem is the challenge of extract-
ing local representations at keypoints, typically distributed
sparsely over an image, in a manner which is both discrim-
inative and invariant to various image transformations. Ad-
ditional requirements, often as important if not more, are

Figure 1. Visualization of the LATCH descriptor. Given an im-
age patch centered around a keypoint, LATCH compares the in-
tensity of three pixel patches in order to produce a single bit in
the final binary string representing the patch. Example triplets are
drawn over the patch in green and blue.

that a representation be efficient in terms of the computa-
tional costs required to produce it, the space required to
store it and the time required to search for matching de-
scriptors in large descriptor repositories.

Over the past two decades, several distinct approaches
for designing such descriptors have emerged. Two note-
worthy designs are the distribution-based representations
and the binary descriptors. Distribution-based descriptors,
which include the successful SIFT [17] and HOG [8] repre-
sentations, represent visual information using distributions
of image measurements (e.g., gradients, gradient orienta-
tions, etc.). Though proven highly effective in an ever
widening range of applications, their main drawbacks are
their size, the time required to produce them, and the chal-
lenges associated with efficiently searching through large
numbers of such descriptors [14].

Binary descriptors, on the other hand, were designed
with an emphasis on minimizing computational and storage
costs [2, 6, 15, 16, 24, 26, 28, 29]. These methods repre-
sent image patches using a (typically short) binary string,
commonly computed by sampling and comparing pixels
in the patch; different methods advocating different sam-
pling strategies or other methods for increasing the descrip-
tors discriminate power (e.g. boosting, discriminant pro-
jections). Though binary representations may not be as de-
scriptive as their histogram counterparts, they make up for

this shortcoming in their compact size, efficient computa-
tion, and the ability to quickly compare descriptor pairs us-
ing few processor-level instructions.

The representation presented here belongs to the latter
family of descriptors. Our work is motivated by the long-
standing observation that the act of sampling pixel pairs in
order to compute each binary value in the representation is
sensitive to noise and other changes in local appearances.
Previous representations have addressed this problem by of-
fering a number of alternative smoothing operations which
should be performed before the pixel values are sampled.
Though this alleviated some of the problem, the unfortunate
side effect of smoothing is, of course, the loss of informa-
tion. This is particularly crucial in high-frequency regions
of the image – precisely where key points are detected, and
where these representations are applied.

We offer an alternative approach based on the simple no-
tion of comparing pixel patches rather than individual pixel
values (illustrated in Fig. 1). By comparing patches, vi-
sual information with more spatial support is considered for
each of the descriptor’s bits, and their values are therefore
less sensitive to noise. We describe a patch-triplet based ap-
proach, in which triplets of patches are compared in order
to set the binary values of the representation. Informative
triplet arrangements are learned beforehand using labeled
training data. Thus, triplet arrangements are ordered by
their contribution to the successful classification of patches
as being either similar or not while refraining from select-
ing highly correlated triplets. The most effective arrange-
ments of patch triplets are then used to sample and compare
patches whenever the descriptor is computed.

The resulting representation, appropriately dubbed
LATCH (Learned Arrangements of Three patCH codes), is
evaluated extensively and shown to outperform existing al-
ternatives by a wide margin, at the cost of a minor increase
in the run-time computational requirements of extracting
the descriptor. To summarize, this paper makes the follow-
ing contributions.

• We propose a novel binary descriptor design, intended
to provide improved stability and robustness than ex-
isting related descriptors.

• We show how effective descriptors can be generated
by off-line, supervised learning of discriminative patch
arrangements.

• Extensive quantitative results and qualitative applica-
tions compare the capabilities of our LATCH represen-
tation with existing descriptors. These show LATCH
to outperform other representations of its kind, signifi-
cantly narrowing the performance gap between binary
descriptors and histogram based methods.

Our implementation has been incorporated into the

OpenCV library and is publicly available. Please see project
page1 for more details.

2. Related Work

The development of local image descriptors has been the
subject of immense research, and a comprehensive review
of related methods is beyond the scope of this work. For a
recent survey and evaluation of alternative binary interest
point descriptors, we refer the reader to [14]. Here, we only
briefly review these and other related representations.

Binary descriptors. Binary keypoint descriptors were re-
cently introduced in answer to the rapidly expanding sizes
of image data sets and the pressing need for compact repre-
sentations which can be efficiently matched. One of the first
of this family of descriptors was the Binary Robust Inde-
pendent Elementary Features (BRIEF) [6]. BRIEF is based
on intensity comparisons of random pixel pairs in a patch
centered around a detected image key point. These com-
parisons result in binary strings that can be matched very
quickly using a simple XOR operation. As BRIEF is based
on intensity comparisons, instead of image gradient com-
putations and histogram pooling of values, it is much faster
to extract than SIFT-like descriptors [17]. Furthermore, by
using no more than 512 bits, a single BRIEF descriptor re-
quires far less memory than its floating point alternatives.

Building upon BRIEF’s design and matching method,
the Oriented fast and Rotated BRIEF (ORB) descriptor [24]
adds rotation invariance by estimating a patch orientation
based on local first order moments within the patch. An-
other innovation proposed by [24] is the use of a unsuper-
vised learning in order to select pixel pairs, rather than the
random sampling of BRIEF.

Rather than random sampling or unsupervised learning
of pairs, the Binary Robust Invariant Scalable Keypoints
(BRISK) [16] use hand-crafted, concentric ring-based sam-
pling patterns. BRISK uses pixel pairs with large distances
between them to compute the patch orientation, and pixel
pairs separated by short distances to compute the values of
the descriptor itself, again, by performing binary intensity
comparisons on pixel pairs. More recently, inspired by the
retinal patterns of the human eye, the Fast REtinA Keypoint
descriptor (FREAK) was proposed. Similarly to BRISK,
FREAK also uses a concentric rings arrangement, but un-
like it, FREAK samples exponentially more points in the
inner rings. Of all the possible pairs which may be sampled
under these guidelines, FREAK, following ORB, uses un-
supervised learning to choose an optimal set of point pairs.

Similar to BRIEF, the Local Difference Binary (LDB)
descriptor was proposed in [33, 34] where instead of com-
paring smoothed intensities, mean intensities in grids of

1www.openu.ac.il/home/hassner/projects/LATCH

2 × 2, 3 × 3 or 4 × 4 were compared. In addition to the
mean intensity values, LDB compares the mean values of
horizontal and vertical derivatives, amounting to 3 bits per
comparison. Building upon LDB, the Accelerated-KAZE
(A-KAZE) descriptor was suggested in [3] where in addi-
tion to presenting a feature detector, the authors also suggest
the Modified Local Difference Binary (M-LDB) descriptor.
M-LDB uses the A-KAZE detector estimation of orienta-
tion for rotating the LDB grid to achieve rotation invariance
and uses the A-KAZE detector’s estimation of feature scale
to sub-sample the grid in steps that are a function of the
feature scale.

A different design approach was proposed by [26]. Their
LDA-Hash extracts SIFTs from an image, projects them to
a discriminant space and then thresholds the projected de-
scriptors to obtain binary representations. Producing LDA-
Hash requires extracting SIFT descriptors, making it slower
than its pure binary alternatives. To alleviate some of this
computation, DBRIEF [29] projects patch intensities di-
rectly. Projections are computed as linear combinations of
few, simple filters from a given dictionary. The BinBoost
representation of [15, 28] learns a set of hash functions cor-
responding to each bit in the final descriptor. Hash functions
are learned using boosting and implemented as sign opera-
tions on a linear combination of non linear week classifiers.
Finally, PR-proj [25] use a combination of learning-based
methods and dimensionality reduction techniques to reduce
image gradient measurements into compact and effective bi-
nary representations.

These last representations, LDA-Hash, DBRIEF, Bin-
Boost and PR-proj, all obtain binary representations fol-
lowing application of filter combinations or floating-point
descriptor extraction. Thus, though they show improved
performance over the original binary descriptors, they are
all far more expensive computationally and so may be un-
suitable in many practical applications.

Unlike these methods, our own uses efficient patch com-
parisons directly. Unlike the earlier representations (i.e.
BRIEF,ORB,BRISK and FREAK), rather than comparing
pairs of pixels, we compare triplets of pixel patches thereby
providing more spatial support for each comparison. This
provides more information at each comparison, making
the binary values more robust to various sources of noise.
Doing so also requires redesigning the descriptor itself.
Finally, in contrast to the unsupervised learning of arrange-
ments proposed by ORB, we use supervised learning to
obtain efficient patch combinations.

Local binary patterns. In a separate line of work, the Local
Binary Patterns (LBP) were proposed as global (whole im-
age) representation by [22, 23]. Since then, they have been
successfully applied to many image classification problems,
most notably of texture and face images (e.g., [1] and [21]).

LBP produces for each pixel in the image a (typically
very short) binary string representation. In fact, to our
knowledge, 8-bit strings or less were employed in all appli-
cations of LBP. These bits, similarly to the binary descrip-
tors, are set following binary comparisons between image
pixel intensities. In the original LBP implementation, these
bits were computed by using a pixel’s value as a threshold,
applied to its eight immediate spatial neighbors, and taking
the resulting zero/one values as the 8-bit string. By using
only 8-bits, each pixel is thus represented by a code in the
range of [0..255] (or less, in some LBP variations), which
are then pooled spatially in a histogram in order to represent
image portions or entire images.

Our work is related to a particular LBP variant, the
Three-Patch LBP (TPLBP) [31, 32], which was shown to
be an exceptionally potent global representation for face
images [10]. Unlike previous LBP code schemes, TPLBP
computes 8-bit value codes by comparing not the intensi-
ties of pixel pairs, but rather the similarity of three pixel
patches. Specifically, for every pixel in the image, TPLBP
compares the pixel patch centered on the pixel, with eight
pixel patches, evenly distributed on a ring at radius r around
the pixel. A single binary value is set following a compar-
ison of the center patch to two patches, spaced α degrees
away from each other along the circle. A value of 1 repre-
sents the central patch being closer (in the SSD sense) to the
first of these two patches, 0 otherwise.

The TPLBP codes, though similar in spirit to the LATCH
descriptor presented here, are different from it in several im-
portant aspects. Technically, TPLBP use a hand tailored,
parameter controlled, limited sampling scheme, where a
single anchor patch (the central patch) is compared again
and again with a limited number of patch pairs at specific
relative positions controlled by the ring radius r and the
angle between patches α. Our proposed LATCH, on the
other hand, can potentially consider any arrangement of
three patches for this purpose. Moreover, LATCH learns
which arrangements are optimal from training data, rather
than being hand-crafted.

More important, however, is the conceptual difference:
LATCH is designed as a (sparse) keypoint descriptor, rather
than a per-pixel code intended for pooling over image re-
gions. To our knowledge, no previous work has considered
using the design insights of TPLBP to represent key points.

3. Method
We begin with a review of binary descriptor design. Let

W be a detection window, an image portion of fixed, pre-
determined size, centered on a detected image key point.
A binary descriptor bW is formed by considering an or-
dered set S = {st}t=1...T = {[pt,1,pt,2]}t=1...T of T pairs
of sampling coordinates, pt,1 = (xt,1, yt,1) and pt,2 =
(xt,1, yt,2), given inW ’s coordinate frame. The selection of

Descriptor Running time (ms)
SIFT [17] 3.29
SURF [4] 2.11
LDA-HASH [26] 5.03
LDA-DIF [26] 4.74
DBRIEF [29] 8.75
BinBoost [15, 28] 3.29
BRIEF [6] 0.234
ORB [24] 0.486
BRISK [16] 0.059
FREAK [2] 0.072
A-KAZE [3] 0.069
LATCH 0.616

Table 1. Run time analysis. Time measured in milliseconds for
extracting a single local patch descriptor. Notice that LATCH
only slightly slower than some of the popular binary descriptors
and is an order of magnitude faster than the slower histogram and
learning-based representations.

values for S is performed beforehand, either randomly (e.g.,
BRIEF [6]), manually (BRISK [16]), or is automatically
learned from training data (ORB [24] and FREAK [2]).

Each index t is typically associated not only with a
pair of coordinates in W , but also with a pair of Gaussian
smoothing kernels, σt = (σt,1, σt,2)t=1...T . These are ap-
plied separately to W , in the pixel coordinates given by st,
before being sampled. Thus, for each sampling pair st, the
smoothed intensities at the two sampling points pt,1 and
pt,2, are compared and a single bit is set according to:

f(W, st, σt) =

{
1 if W (pt,1, σt,1) > W (pt,2, σt,2)

0 otherwise
(1)

where W (pt,1, σt,1) (similarly W (pt,2, σt,2)) is the value
of the image windowW at coordinates pt,1 (pt,2) smoothed
by a Gaussian filter with standard deviation σt,1 (σt,2). The
final binary string bW , produced for image window W , is
defined by

bW =
∑

1 ≤ t ≤ T

2tf(W, st, σt) (2)

3.1. From pixel pairs to patch triplets

As previously mentioned, the pixel pairs sampling strat-
egy presented above, though efficient, can be susceptible to
noise as each bit relies on the values of two specific pix-
els. Though pre-smoothing can alleviate some of this prob-
lem, it can also result in the loss of information particularly
at high frequency regions where key points are often de-
tected. As a means of ameliorating this, we propose com-
paring pixel patches rather than pixels. Doing so, however,
requires changing how each bit’s value is set and in partic-
ular, defining a binary relation between pixel patches. This
is achieved by using three-way patch comparisons.

Specifically, we consider t = 1 . . . T pixel patch triplets,
adding the location of an “anchor” patch and redefining S
as Ŝ = {ŝt}t=1...T = {[pt,a,pt,1,pt,2]}t=1...T . Each of
the pixel coordinates, pt,a, pt,1, and pt,2 provides the lo-
cation of the central pixel in patches of size k × k pixels,
denoted by Pt,a, for the anchor patch, and Pt,1, and Pt,2

for its “companion” patches. We then evaluate the similarity
of the anchor patch Pt,a to its two companions, by comput-
ing their Frobenious norm. Thus, the single binary value is
produced by revising function f as follows:

g(W, ŝt) =

{
1 if |||Pt,a −Pt,1||2F > ||Pt,a −Pt,2||2F
0 otherwise

(3)
Finally, the binary string bW is defined by replacing func-
tion f with g in Eq. 2. Importantly, unlike previous binary
descriptors, this scheme samples image intensities without
pre-smoothing. Though we have experimented by adding
smoothing this seemed to provide little benefit. Not surpris-
ingly, the related TPLBP codes of [32] also did not perform
such smoothing, presumably for the same reasons.

3.2. Learning patch triplet arrangements

Even small detection windows W give rise to a huge
number of possible triplet arrangements. Considering that
only a small number T of bits is typically required (in prac-
tice, no more than 256), we must therefore consider which
of the many possible triplet arrangements should be em-
ployed. Here, rather than taking one of the three approaches
described by existing binary descriptors (Sec. 2), we pro-
pose our own selection criteria.

Specifically, we use the data-set introduced in [5]. It
consists of three separate collections: Liberty, Notre Dame,
and Yosemite. Each of these contains over 400k local im-
age windows that were extracted around multi-scale Harris
corner detections [12]. Pairs of these windows, extracted
from different images in each collection, were labeled as
being “same” (the two windows present the same physical
scene point, viewed from different viewpoints or viewing
conditions) or “not-same”. These labels were obtained by
employing multi-view stereo to form correspondences be-
tween different images in each collection. These windows
were then partitioned into 500k pairs of which half are la-
beled as same and half not-same.

We form 56k patch triplet arrangements, by random se-
lection of the pixel coordinates pt,a of the anchor patch, and
the coordinates pt,1 and pt,2 of its two companion patches
(t = 1 . . . T = 56, 000). We then evaluate each of these T
arrangements over all the window pairs in the benchmark,
giving us 500k bits per arrangement. We define the qual-
ity of an arrangement by summing the number of times it
correctly yielded the same binary value for “same” labeled

Figure 2. Oxford benchmark Recall vs. 1-precision curves.
Top: Bikes results (blur) ; Bottom: Leuven results (lightning). Ev-
idently, LATCH outperforms all methods, except those that are an
order of a magnitude slower. Notice LATCH’s superior perfor-
mance at the high precision section of the graph.

pairs and different values for “not-same” labeled pairs.
Arrangement selection based on this criteria may result

in highly correlated arrangements being selected. To pre-
vent this, following [2, 24], we add arrangements incre-
mentally, skipping over those with responses highly corre-
lated to previously selected arrangements. Specifically, a
candidate arrangement is selected if its absolute correlation
with all previously selected arrangements is smaller than
a threshold τ . In our experiments, this value was set to
τ = 0.2 and left unchanged.

We note that others have also used the data-set from [5]
for the purpose of learning binary descriptors (e.g. [15,
26, 28, 29]). However, those methods differ from the one
proposed here as they do not learn optimal arrangements
for pixel comparison, but instead learn optimal projections
or linear/non-linear filters to apply to these patches. The
method presented here is simpler, yet provides comparative,
or even better performance, as we later show.

4. Experimental results
Our LATCH extraction routine is implemented in C++

using OpenCV 2.0 for image processing operations. Un-
less otherwise noted, we used 32-byte LATCH descriptors
with 7 × 7 patches. Detection windows are 48 × 48 pixels
centered on keypoints. Our tests use the efficient C++ de-
scriptor implementations available from OpenCV or from
their various authors, with parameter values left unchanged.

4.1. Empirical results

Comparisons are provided using a wide range of relevant
alternative methods. These include the “pure”-binary de-

scriptors: BRIEF [6], ORB [24], BRISK [16], FREAK [2]
and A-KAZE [3]. We additionally provide results compar-
ing LATCH to the more computationally expensive LDA-
Hash [26], DBRIEF [29] and BinBoost [15, 28] representa-
tions. Finally, the performances of SIFT [17] and SURF [4]
are also provided.

We note that the original BRIEF descriptor is not invari-
ant to rotations where all others are. To compensate for
this, in all our tests we used a slightly modified version
of BRIFT: The descriptor was extracted at SIFT keypoints,
with the image rotated around each keypoint according to
the orientation assigned to it by the detector. This improved
its performance compared to some of the more recent de-
scriptors. To avoid confusion, below we refer to this repre-
sentation as steered BRIEF, or SBRIEF.

We used two standard benchmarks for our tests: the Ox-
ford [18, 19] and the Learning Local Image Descriptors [5]
benchmarks. Our tests employ the test protocols associated
with these benchmarks. We additionally provide a range
of tests designed to evaluate the contribution and effect of
various design aspects of our LATCH descriptor.

Run times. We begin by comparing the computational
costs associated with extracting the various descriptors used
in our experiments. The time (ms) required to extract a sin-
gle descriptor were averaged over 250K patches of different
scale and orientation, taken from various images. Measure-
ments were performed on an Intel Core i7 laptop with 16.0
GB of memory, running 64-bit Microsoft Windows 8.1.

Table 1 summarizes the measured running times. The
substantial difference between the time required to extract
the pure binary descriptors, including our own LATCH, and
descriptors based on floating point values is clearly evident.
In particular, LATCH requires an order of magnitude less
time than some of these alternatives.

Oxford data-set. Originally described by [18, 19] this set
has since become the standard for evaluating descriptor de-
sign capabilities, and in particular, the capabilities of the
binary descriptors discussed here (see, e.g., [2, 3, 6, 16]).

The Oxford data-set comprises of eight image sets, each
with six images presenting increasing appearance varia-
tions. The appearance variations modeled by the benchmark
sets are: zoom and rotation (the Boat and Bark sets), pla-
nar perspective transformations (view-point changes in the
Graffiti and Wall sets), lightning changes (the Leuven set),
JPEG compression (the UBC set), and increasing degrees
of blur (the sets Bikes and Trees).

For each set, we compare the first image against each of
the remaining five and check for correspondences. Perfor-
mance is measured using the code from [18, 19]2, which
computes recall and 1-precision using known ground truth

2www.robots.ox.ac.uk/~vgg/research/affine

Descriptor Bark Bikes Boat Graffiti Leuven Trees UBC Wall Average
SIFT [17] 0.077 0.322 0.080 0.127 0.130 0.047 0.130 0.138 0.131
SURF [4] 0.071 0.413 0.088 0.133 0.300 0.046 0.268 0.121 0.180
LDA-HASH [26] 0.199 0.466 0.269 0.155 0.303 0.110 0.393 0.268 0.270
LDA-DIF [26] 0.197 0.472 0.278 0.170 0.435 0.101 0.396 0.260 0.289
DBRIEF [29] 0.000 0.025 0.001 0.008 0.010 0.001 0.031 0.002 0.010
BinBoost [15, 28] 0.055 0.344 0.083 0.132 0.338 0.037 0.217 0.119 0.166
BRIEF [6] 0.055 0.353 0.050 0.102 0.227 0.060 0.178 0.141 0.146
ORB [24] 0.032 0.208 0.048 0.062 0.118 0.027 0.121 0.050 0.083
BRISK [16] 0.015 0.138 0.026 0.071 0.161 0.018 0.131 0.038 0.075
FREAK [2] 0.019 0.145 0.034 0.101 0.194 0.026 0.147 0.041 0.089
A-KAZE [3] 0.022 0.326 0.005 0.048 0.138 0.027 0.144 0.048 0.095
LATCH 0.065 0.415 0.057 0.119 0.374 0.082 0.215 0.175 0.188

Table 2. Oxford benchmark results. Numerical results summarizing area under the recall vs. 1-precision curve for the eight subsets of
the Oxford set. Results for the much larger, floating point, histogram based descriptors are presented separately. Higher results are better.
In total, LATCH outperforms almost all alternatives, including even the floating point descriptors such as SIFT and SURF.

homographies between the images. We also provide the
area under the recall vs. 1-precision curve, averaged over
all five image pairs in each set.

Following the test protocol employed in, e.g., [2, 3, 4,
6, 16, 24] each descriptor was extracted at image locations
detected using its own original keypoint detector. Our own
LATCH descriptor was applied to keypoints returned by the
multi-scale Harris based detector used by the original SIFT
implementation [17]. As some of the sets in the Oxford
benchmark depict rotation changes and some do not, we
implement rotation invariance by using the detected orien-
tation, or the descriptors’ own estimates when available.

Table 2 summarizes our results. Fig. 2 additionally
provides recall vs. 1-precision curves for the Bikes and
UBC sets. Aside from LDA-HASH and LDA-DIF which
extract binary descriptors by using SIFT descriptors and
are thus much slower, LATCH outperforms the other binary
descriptors on most sets and in some cases even the much
larger SIFT and SURF representations.

Learning Local Image Descriptors data-set. We next re-
port tests on the data-set described by [5]3. It provides a
large number of detection windows along with same/not-
same labels signifying whether two windows from two sep-
arate images correspond to the same physical point or not.

The test protocol used here is designed to evaluate the
discriminative power of different image descriptors. Given
two windows, a descriptor is extracted for each one and the
distance between the two descriptors is measured. A scalar
threshold is then applied to this distance in order to deter-
mine if the two descriptors are similar enough to imply that
the windows should be labeled “same” or not. We use the
Yosemite dataset in order to learn an optimal threshold by
using linear support vector machines (SVM) [7]. Yosemite
images were also used to learn patch triplet arrangements
for the LATCH descriptor (Section 3.2). Testing is per-
formed on the Liberty and Notre-Dame sets.

Table 3 summarizes the results in terms of accuracy,

3www.cs.ubc.ca/ mbrown/patchdata/patchdata.html

area under the ROC curve and 95% error-rate (the percent
of incorrect matches obtained when 95% of the true
matches are found). ROC curves for the different methods
tested are presented in Fig 3. Our results show the clear
advantage of the proposed LATCH descriptor over other
binary descriptor designs, with LATCH outperforming the
other representations, in both tests, by noticeable margins.
Although BinBoost and LDA-HASH/DIF perform better
than LATCH on these tests, as previously noted, this added
performance comes at substantial computational costs.

Analysis: Varying descriptor size. In the tests reported
above, we used a LATCH descriptor of 32 bytes. Here,
we revisit the tests on the Oxford benchmark in order
to evaluate the effect descriptor size has on its perfor-
mance. We test varying descriptor sizes (the number of
arrangements used) using 4, 8, 16, 32, and 64 bytes for
the representation. Table 4 (a) summarizes our results,
providing the area under the recall vs. 1-precision curve.
Clearly, the performance of LATCH improves as its size
grows. These results can be compared with those of Table 2.

Notre-Dame Liberty
Descriptor AUC ACC 95% Err AUC ACC 95% Err
SIFT [17] .934 .817 39.7 .928 .764 40.1
SURF [4] .935 .866 41.1 .911 .833 55.0
LDA-HASH [26] .916 .830 46.7 .910 .798 48.1
LDA-DIF [26] .934 .857 38.5 .921 .836 43.1
DBRIEF [29] .900 .830 55.1 .868 .794 61.5
BinBoost [15, 28] .963 .907 21.6 .949 .884 29.3
SBRIEF [6] .889 .823 63.2 .868 .798 66.7
ORB [24] .894 .835 66.2 .882 .822 69.2
BRISK [16] .915 .857 57.7 .897 .834 62.6
FREAK [2] .899 .835 61.5 .887 .824 65.0
A-KAZE [3] .885 .806 56.7 .860 .782 63.4
LATCH .919 .855 52.0 .906 .838 56.7

Table 3. Results on the Learning Local Descriptors dataset.
Same/not-same tests on data from [5]. Testing was performed sep-
arately on the Notre-Dame and the Liberty collections. Higher
results are better for AUC and accuracy (ACC); lower results are
better for the 95% error-rate (Err.). Evidently, LATCH outper-
forms other binary representations by clear margins.

(a) (b) (c) (d)
Figure 3. ROC curves for the Learning Local Descriptors data-set tests. (a) Notre Dame set, ROC curves; (b) zoomed-in view of the
low false positive region of the ROC for the Notre-Dame tests (c) ROC curves for the Liberty tests; (d) zoomed-in view of the low false
positive region of the ROC for the Liberty tests.

Descriptor Bark Bikes Boat Graffiti Leuven Trees UBC Wall AVG

(a) Descriptor size

LATCH-4 0.012 0.282 0.013 0.038 0.269 0.014 0.131 0.030 0.099
LATCH-8 0.029 0.353 0.028 0.074 0.319 0.039 0.167 0.080 0.136
LATCH-16 0.053 0.394 0.044 0.098 0.355 0.064 0.192 0.133 0.167
LATCH-32 0.065 0.415 0.057 0.119 0.374 0.082 0.215 0.175 0.188
LATCH-64 0.073 0.425 0.070 0.131 0.381 0.097 0.239 0.205 0.203

(b) Patch size

LATCH 1× 1 0.058 0.391 0.048 0.103 0.346 0.069 0.190 0.139 0.168
LATCH 3× 3 0.054 0.392 0.049 0.105 0.361 0.070 0.193 0.133 0.170
LATCH 5× 5 0.064 0.405 0.054 0.113 0.368 0.076 0.205 0.156 0.180
LATCH 7× 7 0.065 0.415 0.057 0.119 0.374 0.082 0.215 0.175 0.188
LATCH 9× 9 0.072 0.422 0.059 0.123 0.374 0.085 0.221 0.188 0.193
LATCH 11× 11 0.075 0.428 0.058 0.128 0.376 0.085 0.223 0.196 0.196
LATCH 13× 13 0.078 0.429 0.057 0.129 0.372 0.085 0.220 0.200 0.196
LATCH 15× 15 0.074 0.434 0.054 0.126 0.367 0.081 0.216 0.200 0.194

(c) Learning method

Random 0.064 0.391 0.059 0.104 0.260 0.064 0.229 0.174 0.168
ORB/FREAK 0.073 0.396 0.066 0.108 0.267 0.074 0.239 0.187 0.176
Proposed 0.055 0.413 0.058 0.107 0.379 0.083 0.229 0.155 0.185
Combined 0.065 0.415 0.057 0.119 0.374 0.082 0.215 0.175 0.188

Table 4. Analysis tests on the Oxford benchmark. Results summarizing the performance of our LATCH descriptor using (a) different
descriptor sizes (different numbers of patch triplet arrangements); (b) different patch sizes; (c) different methods of selecting arrangements.
The table provides area under the recall vs. 1-precision curves. Please see text for more details.

Notre-Dame Liberty
Learning Method AUC ACC 95% Err. AUC ACC 95% Err.
Random .894 .822 57.5 .871 .793 60.6
ORB/FREAK .902 .831 55.4 .881 .801 58.2
Proposed .905 .842 58.6 .892 .824 61.8
Combined .919 .855 52.0 .906 .838 56.7

Table 5. Analysis of different learning methods on the Learn-
ing Local Descriptors dataset. Same/not-same tests with differ-
ent learning methods performed using the data from [5]. Testing
was performed separately on the Notre-Dame and the Liberty col-
lections. Higher results are better for AUC and accuracy (ACC);
lower results are better for the 95% error-rate (Err.). Interestingly,
our proposed learning method outperforms [2, 24]. When combin-
ing their correlated triplet elimination technique (“combined”) we
gain a further performance boost.

Analysis: Varying patch size. One of the key components
of the LATCH descriptor is the use of pixel patches com-
pared to sampling single pixels. We next evaluate the effect
of larger pixel patches on the performance of LATCH. Here,
we use a 32 byte LATCH representation, testing it with a
patch sizes ranging from 3× 3 to 15× 15.

We report also the performance of a simpler LATCH
variant, which is computed by comparing pixel triplets,
rather than patch triplets (LATCH 1×1). Similarly to ORB,
in order to handle noise pixel values are sampled following
the same local smoothing. Extracting larger-patch LATCH

descriptors following smoothing brought performance fur-
ther down, and so we do not report these results.

Our results, summarized in Table 4 (b) demonstrate that
larger patches provide more accuracy. In nearly all cases,
the bigger the patches used, the higher the performance
gain. The relative improvement in performance, however,
decays with patches larger than 9 × 9 or 11 × 11. Here
too, these results may be compared with those presented in
Table 2, where LATCH was computed using 7× 7 patches.

It is worthwhile to consider the performance of LATCH
1 × 1. Evidently, this approach almost always provides in-
ferior results even to LATCH extracted using 3× 3 patches.
With the default 7 × 7 patches, LATCH performance is
significantly better than sampling single pixels.

Analysis: Comparing learning methods. As discussed
in 3.2, we propose supervised learning of optimal patch ar-
rangements. The same approach can of course be applied to
learning optimal pairs. We compare the proposed approach
to that of ORB [2, 24] and also present the performance of
the combined method in which the quality of the triplets is
measure by their score on the “same”/“not-same” dataset,
filtering out correlated triplets.

Table 4 (c) presents results on the Oxford benchamark

Figure 4. Structure from motion results. Top: 3D reconstruction results on four standard test sequences obtained with the incremental
structure from motion chain method [20] using the default SIFT and our LATCH. Bottom: Input image examples from each set. Qualita-
tively, SIFT and LATCH provide comparable results though LATCH descriptor matching is an order of magnitude faster (Table 6).

and Table 5 on the Learning Local Descriptors set. Evi-
dently, overall, the proposed learning method outperforms
the learning method of [2, 24], and the combined method
outperforms both. Unsurprisingly, random selection of
patch triplets performs much worse than either of these.

4.2. Application to multi-view 3D reconstruction

One of the more challenging uses of local descriptors
lies in structure from motion (SfM) applications. In or-
der to produce accurate results, local appearances must be
matched across images of the same scene, taken from pos-
sibly widely different views. Additionally, SfM methods
often compare many comparisons between many interest
points, and hence the efficiency of matching descriptors is
also a matter of concern.

We test the use of our proposed LATCH descriptor in a
SfM framework, comparing it to the SIFT descriptor often
used for this purpose. To this end, we have incorporated
LATCH into the OpenMVG library [20] using their incre-
mental structure from motion chain method. We ran SfM
twice, changing only the local image representations from
their default SIFT to our own LATCH descriptors.

In order to isolate the effect of using LATCH rather than
SIFT, both use the same keypoints, recovered by the SIFT
detector implemented in the VLFeat library [30]. All Open-
MVG parameters were kept at their default values apart
from the ratio threshold which was 0.6 for SIFT (the de-
fault), and raised to 0.99 for LATCH (binary descriptors in
general are known to be more sensitive to this value).

Sequence SIFT LATCH
Sceaux Castle 381.63 39.05
Bouteville Castle 4766.22 488.70
Mirebeau Church 3166.35 325.31
Saint Jacques 1651.12 169.19

Table 6. Structure from motion descriptor matching times. The
time (seconds) required to match descriptors when producing the
structure from motion results reported in Fig. 4. LATCH is con-
sistently an order of magnitude faster to match than the standard
SIFT, yet provides qualitatively similar results.

Reconstruction results for standard test image se-

quences [20] are provided in Fig. 4 and the time required
to match the descriptors in each scene is provided in Ta-
ble 6. We note that denser surfaces could conceivably be
produced by running a multi-view stereo algorithm, e.g. the
Patch-based Multi-View Stereo (PMVS) method of [9], fol-
lowing the initial reconstructions. Doing so, however, may
correct errors due mismatching descriptors. We focus on
the quality of the descriptors, not the final reconstruction,
and so this step was not performed here.

Evidently, 3D reconstructions obtained by using both de-
scriptors are qualitatively comparable. The time required to
match our LATCH descriptors, however, is consistently an
order of magnitude faster than SIFT.

5. Conclusions

Over the years, the computer vision community has in-
vested immense efforts in a continuing effort to improve
the performance of local descriptors, including the require-
ments they make on storage, extraction and matching time.
As part of this effort, we propose a new variant to the bi-
nary descriptors representation family. Our LATCH repre-
sentation enjoys the same fast matching time and small stor-
age requirements of binary descriptors. Our tests, however,
demonstrate that it outperforms other binary descriptors by
wide margins, closing the gap between their performance
and the performance reported by the much larger, more ex-
pensive histogram based representations.

In the future, we plan to compare LATCH with recent
methods for extracting features using deep learning [35,
11]. Though these were shown to be extremely effective,
their computational costs are still high, making the trade off
between run time and discriminative capabilities even more
acute than the one reflected by, e.g, Table 1.

A growing volume of work has shown new applica-
tions for matching all the pixels of one image to another
(i.e., dense correspondences [13]). Such systems may ben-
efit from efficient per-pixel representations and applying
LATCH to those problems, possibly by adding scale invari-
ance [27], is a natural next step for this line of research.

References
[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description

with local binary patterns: Application to face recognition.
Trans. Pattern Anal. Mach. Intell., 28(12):2037–2041, 2006.

[2] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina
keypoint. In Proc. Conf. Comput. Vision Pattern Recogni-
tion, pages 510–517. IEEE, 2012.

[3] P. F. Alcantarilla, J. Nuevo, and A. Bartoli. Fast explicit dif-
fusion for accelerated features in nonlinear scale spaces. In
British Machine Vision Conf. (BMVC), 2013.

[4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. In European Conf. Comput. Vision, pages
404–417. Springer, 2006.

[5] M. Brown, G. Hua, and S. Winder. Discriminative learning
of local image descriptors. Trans. Pattern Anal. Mach. Intell.,
33(1):43–57, 2011.

[6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary
robust independent elementary features. In European Conf.
Comput. Vision, pages 778–792. Springer, 2010.

[7] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients
for human detection. In Proc. Conf. Comput. Vision Pattern
Recognition, volume 1, pages 886–893. IEEE, 2005.

[9] Y. Furukawa and J. Ponce. Accurate, dense, and robust
multiview stereopsis. Trans. Pattern Anal. Mach. Intell.,
32(8):1362–1376, 2010.

[10] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? met-
ric learning approaches for face identification. In Proc. Int.
Conf. Comput. Vision, pages 498–505. IEEE, 2009.

[11] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.
Matchnet: Unifying feature and metric learning for patch-
based matching. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3279–
3286, 2015.

[12] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey vision conference, volume 15, page 50.
Manchester, UK, 1988.

[13] T. Hassner and C. Liu. Dense Image Correspondences for
Computer Vision. Springer, 2015.

[14] J. Heinly, E. Dunn, and J.-M. Frahm. Comparative evaluation
of binary features. In European Conf. Comput. Vision, pages
759–773. Springer, 2012.

[15] V. Lepetit, T. Trzcinski, P. Fua, C. M. Christoudias, et al.
Boosting binary keypoint descriptors. In Proc. Conf.
Comput. Vision Pattern Recognition, number EPFL-CONF-
186246, 2013.

[16] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary
robust invariant scalable keypoints. In Proc. Int. Conf. Com-
put. Vision, pages 2548–2555. IEEE, 2011.

[17] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, 2004.

[18] K. Mikolajczyk and C. Schmid. A performance evalua-
tion of local descriptors. Trans. Pattern Anal. Mach. Intell.,
27(10):1615–1630, 2005.

[19] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A
comparison of affine region detectors. Int. J. Comput. Vision,
65(1-2):43–72, 2005.

[20] P. Moulon, P. Monasse, and R. Marlet. Adaptive structure
from motion with a contrario model estimation. In Asian
Conf. Comput. Vision, pages 257–270. Springer, 2013. Avail-
able: github.com/openMVG/openMVG/.

[21] L. Nanni, A. Lumini, and S. Brahnam. Survey on lbp based
texture descriptors for image classification. Expert Systems
with Applications, 39(3):3634–3641, 2012.

[22] T. Ojala, M. Pietikäinen, and T. Mäenpää. A generalized
local binary pattern operator for multiresolution gray scale
and rotation invariant texture classification. In ICAPR, 2001.

[23] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. Trans. Pattern Anal. Mach. Intell.,
24(7):971–987, 2002.

[24] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an
efficient alternative to sift or surf. In Proc. Int. Conf. Comput.
Vision, pages 2564–2571. IEEE, 2011.

[25] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local
feature descriptors using convex optimisation. Trans. Pattern
Anal. Mach. Intell., 2014.

[26] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua.
Ldahash: Improved matching with smaller descriptors. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, 34(1):66–78, 2012.

[27] M. Tau and T. Hassner. Dense correspondences across scenes
and scales. Trans. Pattern Anal. Mach. Intell., 2014. To
appear.

[28] T. Trzcinski, C. M. Christoudias, and V. Lepetit. Learning
image descriptors with boosting. Technical report, Institute
of Electrical and Electronics Engineers, 2013.

[29] T. Trzcinski and V. Lepetit. Efficient discriminative pro-
jections for compact binary descriptors. In European Conf.
Comput. Vision, pages 228–242. Springer, 2012.

[30] A. Vedaldi and B. Fulkerson. VLFeat: An open and
portable library of computer vision algorithms. Avail-
able: www.vlfeat.org/, 2008.

[31] L. Wolf, T. Hassner, and Y. Taigman. Effective uncon-
strained face recognition by combining multiple descrip-
tors and learned background statistics. Trans. Pattern Anal.
Mach. Intell., 33(10):1978–1990, 2011.

[32] L. Wolf, T. Hassner, Y. Taigman, et al. Descriptor based
methods in the wild. In Proc. Conf. Comput. Vision Pattern
Recognition, 2008.

[33] X. Yang and K.-T. Cheng. Ldb: An ultra-fast feature for
scalable augmented reality on mobile devices. In Mixed and
Augmented Reality (ISMAR), 2012 IEEE International Sym-
posium on, pages 49–57. IEEE, 2012.

[34] X. Yang and K.-T. Cheng. Local difference binary for ultra-
fast and distinctive feature description. Trans. Pattern Anal.
Mach. Intell., 36(1):188–194, Jan 2014.

[35] S. Zagoruyko and N. Komodakis. Learning to compare
image patches via convolutional neural networks. arXiv
preprint arXiv:1504.03641, 2015.

