
The CUDA LATCH Binary Descriptor:
Because Sometimes Faster Means Better

Christopher Parker1, Matthew Daiter2, Kareem Omar3,
Gil Levi4 and Tal Hassner5,6

1University of Oslo, Norway 2Nomoko AG
3University of Alabama in Huntsville, AL, USA

4Tel Aviv University, Israel
5Information Sciences Institute, USC, CA, USA

6The Open University of Israel, Israel

Abstract. Accuracy, descriptor size, and the time required for extrac-
tion and matching are all important factors when selecting local image
descriptors. To optimize over all these requirements, this paper presents
a CUDA port for the recent Learned Arrangement of Three Patches
(LATCH) binary descriptors to the GPU platform. The design of LATCH
makes it well suited for GPU processing. Owing to its small size and bi-
nary nature, the GPU can further be used to efficiently match LATCH
features. Taken together, this leads to breakneck descriptor extraction
and matching speeds. We evaluate the trade off between these speeds
and the quality of results in a feature matching intensive application.
To this end, we use our proposed CUDA LATCH (CLATCH) to recover
structure from motion (SfM), comparing 3D reconstructions and speed
using different representations. Our results show that CLATCH provides
high quality 3D reconstructions at fractions of the time required by other
representations, with little, if any, loss of reconstruction quality.

1 Introduction

Quantity has a quality all its own
Thomas A. Callaghan Jr.

Local features and their descriptors play pivotal roles in many computer vision
systems. As such, research on improving these methods has been immense. Over
the years, this effort yielded progressively more accurate representations. These
improvements were often demonstrated on standard benchmarks designed to
measure the accuracy of descriptor matching in the presence of various image
transformations and other confounding factors. It remains unclear, however, if
the improved accuracy reported on these benchmarks reflects better, more useful
representations when used in real world computer vision systems.

Take, for example, recent attempts to use deep learning for image feature rep-
resentation (e.g., [10,26,40]). There is no question that given sufficient training

2 C. Parker, M. Daiter, K. Omar, G. Levi and T. Hassner

data and computational resources deep learning methods can achieve astonish-
ing accuracy. Hence, using them to obtain local descriptors can result in better
representations and by so doing impact a wide range of computer vision systems.

But using deep learning for feature description and matching does not come
without a price: Most of these methods are computationally expensive and even
with graphical processing units (GPU), are relatively slow. Even after extraction,
their dimensions and floating point values makes them slow to match. Finally,
they require substantial training data which can be difficult to provide.

These limitations should be contrasted with evidence that accuracy, though
important, is not the only property worth considering when choosing descrip-
tors. For example, simultaneous localization and mapping (SLAM) methods were
shown to obtain better 3D reconstructions for the same computational effort by
increasing the amount of feature points per keyframe [29]. This suggests that
computationally cheaper features are more desirable for these systems. Conse-
quently, state of the art SLAM techniques [21] use ORB [25] rather than more
accurate but computationally expensive representations such as SIFT [19]: Doing
so allows for a greater number of features to be extracted without compromising
reconstruction accuracy. In fact, even classification systems appear to benefit
from having more features over higher feature accuracy, as reported by [22].

One side effect to the success of deep learning is that the hardware enabling
it – GPU processors – is now becoming standard on systems running computer
vision applications, including even consumer cellphone devices. Beyond deep
learning, these GPUs can also be used to accelerate extraction and matching of
older, so-called engineered descriptors. These representations may not reach the
same benchmark performances as deep learning techniques, but their extraction
on the GPU offers a potential trade off between accuracy and run time. In
particular, faster descriptor extraction and matching allows for more descriptors
to be used and consequently better overall system performances.

GPU accelerated features were considered in the past. We, however, focus
on a particular binary descriptor: the Learned Arrangement of Three Patches
(LATCH) [18]. It was recently shown to offer a compromise between the high
accuracy, low speeds of floating point representations such as SIFT [19], and
the low accuracy, high speeds of binary descriptors (e.g., ORB [25], BRIEF [8]).
Beyond these properties, its design also happens to neatly fit GPU processing.

Our contributions are: (1) We describe CLATCH, a CUDA port for LATCH,
enabling descriptor extraction and matching directly on the GPU. (2) We em-
bed CLATCH in the OpenMVG library [20], along with a fast, GPU based Ham-
ming distance, brute force descriptor matcher. Finally, (3) we compare SfM 3D
reconstructions on scenes from [23] using SIFT, recent deep learning based rep-
resentations and our CLATCH. These show that CLATCH reconstructions are
comparable or even better than those obtained with other representations, yet
CLATCH requires a fraction of the run time of its alternatives. Importantly, to
promote reproducibility, the code used in this paper is publicly available from
the project webpage: www.openu.ac.il/home/hassner/projects/LATCH.

www.openu.ac.il/home/hassner/projects/LATCH

The CUDA LATCH Binary Descriptor 3

2 Related work

Due to their key role in many computer vision systems, local feature descriptors
are extensively studied. A comprehensive survey is therefore outside the scope
of this paper. Below we provide only a cursory overview of this topic.
Floating point representations. For nearly two decades now, SIFT [19] is
very likely the most widely used local image descriptor. It and the representations
that followed (e.g., SURF [6]) represent the region around an image pixel using
a vector of typically 128 floating point values. This vector is often a histogram
of measurements extracted from the image, most commonly various functions of
the local intensity gradients.
Binary descriptors. Despite the success of the older floating point representa-
tions, a prevailing problem was their extraction time and dimensionality (which,
in turn, affected their storage and matching time). In response, binary descriptors
were proposed as low dimensional, efficient alternative representations. These
typically assign descriptor values by quick, pixel intensity comparisons.

One of the first binary descriptors was the Binary Robust Independent Ele-
mentary Features (BRIEF) [8], soon followed by the Oriented fast and Rotated
BRIEF (ORB) descriptor [25] which added rotation invariance, the Binary Ro-
bust Invariant Scalable Keypoints (BRISK) [17] which used a more effective pixel
sampling pattern, and the Fast REtinA Keypoint descriptor (FREAK) [1] which
sampled intensities using a pattern similar to the one found in human retinas.
The Accelerated-KAZE (A-KAZE) was suggested in [2]. It builds on the ear-
lier Local Difference Binary (LDB) descriptor [38,39] by computing the binary
descriptor values from mean image intensities over a range of patch sizes. The
binary online learned descriptor (BOLD) [4] improve accuracy yet retain high
processing speeds. Finally and very recently, the LATCH binary descriptors were
proposed in [18]. We defer discussion of LATCH to Sec. 3.

Hybrid binary/floating-point methods were also suggested. One example is
LDA-Hash [30] which extracts SIFTs, projects them to a discriminative space
and applies a threshold to obtain binary descriptors. DBRIEF [34] instead uses
patch intensities directly, BinBoost [16,33] learns a set of hash functions corre-
sponding to each bit in the final descriptor and PR-proj [27] uses learning and
dimensionality reduction to produce compact binary representations. The com-
putational effort required to extract these descriptors is similar to (if not greater
than) floating point descriptors. The representations, however, are short binary
vectors and so matching and storing them is relatively efficient.
Computing local descriptors on the GPU. Of course, we are not the first to
propose porting local feature extraction to the GPU. To our knowledge, nearly
all these efforts used the GPU to aid in extracting floating point descriptors,
including GPU-SIFT (see, e.g., [37,13,28,36]) and GPU-SURF [32]. These meth-
ods all used GPUs in portions of the extraction process. For example, [36] used
the GPU only to compute convolutions, all other stages performed on the CPU.
In addition, and more importantly, the gain in performance reported by these
methods are modest and do not approach the speeds of contemporary binary
descriptors, let alone our CLATCH.

4 C. Parker, M. Daiter, K. Omar, G. Levi and T. Hassner

Interestingly, the only available GPU binary descriptor is CUDA ORB, im-
plemented by OpenCV [14]. As we later discuss, due to the nature of GPU
processing, the run time advantage of ORB over the more accurate LATCH
descriptor when computed on the CPU, vanishes on the GPU.
Deep features. Following the remarkable success of deep learning in computer
vision, it is no surprise that these methods are also being applied to feature point
description. Convolutional Neural Networks (CNN) were used in a number of
previous attempts to learn local descriptor representations [10,26,40,3].

In most cases, a Siamese deep network is trained with hinge loss [10,26,40].
The training set used in these cases consists of positive and negative labeled
patch pairs. Metric learning is then used to improve matching. Finally, [3] pro-
posed an efficient CNN design, bringing processing speeds down substantially.
As we later show, their run time is still slower than our proposed approach.

3 CUDA LATCH

3.1 Preliminaries

The LATCH feature descriptor. LATCH was recently introduced in [18]
and is available as part of the OpenCV library since ver. 3.0 [14]. Its design
was inspired by the observation that pure binary descriptors such as BRIEF
and ORB produce their values by comparing pairs of pixel intensities, a process
which can be sensitive to local noise. To address this, these methods used various
smoothing techniques before pixel values were compared. Smoothing, however,
has the adverse effect of losing important high frequency image information.

Rather than smoothing the image and then comparing single pixel values,
LATCH computes its binary values by comparing pixel patches. The LATCH
descriptor for image pixel p = (x, y) is computed by selecting t = 1..T patch
triplets, one for each LATCH bit. For triplet t, three pixels are selected in the
region around p: an anchor pixel pt,A and two companion pixels pt,1 and pt,2.
The k×k pixel patches, Pt,A,Pt,1, and Pt,2 centered on each of these three pixels
are extracted. Finally, bit t in the LATCH descriptor for p is set by comparing
the Frobenious norm of the anchor to its two neighbors, as follows:

LATCH(p, t) =

{
1 if ||Pt,A −Pt,1||2F > ||Pt,A −Pt,2||2F
0 otherwise

. (1)

The triplets LATCH uses are fixed but are not arbitrary: Triplets are selected
during training using the data set from [7], which contains same/not-same la-
beled image windows. Triplets were chosen by considering how well their bits
correctly predicted the same/not-same labels over the entire training set. To
prevent choosing correlated triplets, following [1,25], triplets are skipped if their
predictions are correlated with those of previously chosen triplets.

In their work [18], LATCH contained 512 bits (selected triplets) each one
representing triplets of 7 × 7 patches. At matching time, its computational re-
quirements were obviously equal to those of any other 512 bit binary descriptor.

The CUDA LATCH Binary Descriptor 5

Due to the use of patches and multiple Frobenious norms, extracting LATCH
was slower than pure binary descriptors of the same size. Experiments reported
in [18], however, showed that the increase in extraction time was small. This
was balanced by improved accuracy which bested existing binary descriptors,
sometimes rivaling even larger floating point representations.

The GPU architecture and non-blocking programs. Though the specific
architectural designs of GPU processors changes from generation to generation,
all have several multiprocessors. A CPU can launch non-blocking (parallel) GPU
programs on these multiprocessors, referred to as kernels. That is, while a ker-
nel is being executed on the GPU, the CPU is free to pursue other tasks and
similarly, memory transfers to and from the GPU can take place without block-
ing either CPU or GPU. This property is extremely important when designing
computer vision systems using the GPU: It implies that if the GPU extracts
descriptors independently of the CPU, the CPU is free to perform higher level
processing. Related to the SfM application considered here are optimizations
for recovering transformations [11] and/or multiple view stereo for scene struc-
ture [9].

Some previous attempts to port descriptors to the GPU used it only for parts
of the descriptor extraction process, using the CPU for others and requiring
multiple memory transfers between processors [28,36]. This at least partially
explains why these attempts showed only modest run time improvements over
their original, CPU implementations. As a design goal, we therefore limit the use
of the CPU and any communications between it and the GPU when extracting
and comparing our descriptors.

Why LATCH? LATCH was selected for following reasons.

– Memory access vs. computation. The emphasis in GPU processing on
raw arithmetic power results in memory access patterns often being the de-
termining factor in performance rather than the actual computation. LATCH
requires more processing than pure binary representations (e.g., [8,25,17,1,2])
and therefore requires more CPU time to compute than they do. The mem-
ory transfer requirements of LATCH, however, are very similar to these other
descriptors and hence it stands to gain more on the GPU.

– Limited conditional branching. As mentioned above, GPUs are opti-
mized for processes which have few, if any, conditional branching; under
these circumstances, modern GPUs are capable of up to 10 Tera-FLOPS.
Most pure binary descriptors are therefore well suited for GPU processing,
whereas porting more complex representations to the GPU is less trivial.

– Binary string comparisons. LATCH is a binary representation. Like other
binary representations, it can be matched using fast Hamming distance com-
parisons. These can further be performed extremely fast on the GPU.

Finally, as demonstrated in the tests reported by [18], LATCH outperforms
other binary descriptors making it ideally suited for our purposes.

6 C. Parker, M. Daiter, K. Omar, G. Levi and T. Hassner

3.2 Implementing LATCH with CUDA1

We have ported the LATCH representation to CUDA 8, building on the original
LATCH OpenCV C++ implementation. In all our evaluations, CLATCH rep-
resentations were extracted from 64 × 64 pixel windows, using mini-patches of
8× 8 pixels giving a 64-byte feature vector.

To minimize CPU processing, differently from [18], we use the Features from
Accelerated Segment Test (FAST) [24] feature detector. FAST is already avail-
able on the GPU as part of the OpenCV [14] library. Given a detected oriented
keypoint, p = (x, y, θ) we extract LATCH from a 64 × 64 intensities window
around this point. This process is described next.
Parallelizing LATCH on the GPU. GPU kernels include several identi-
cal, concurrently-executing, non-interacting blocks. Each one consists of groups
(warps) of 32 threads. In our implementation, a CLATCH kernel sequentially
computes 16 descriptors per block. While the region of interest for one interest
point is being processed, the next one is prefetched to pipeline the processing.

A single descriptor is extracted by multiple warps in each block. Each warp
independently computes sixteen patch triplets, [Pt,A,Pt,1,Pt,2], four at a time,
without any explicit synchronization during the main computation. All told, two
blocks of 32 warps, each one containing 32 threads (total of 2048 threads) are
processed at a time per multiprocessor. This coarse granularity was chosen to
maximize performance across a variety of GPU architecture generations.
Memory optimization. Given the FAST orientation for an image region, the
rotated 64×64 pixel rectangle is loaded into shared memory as an upright square
of single-precision floats. We use texture memory accesses to efficiently load and
process these values. Our implementation eliminates bank conflicts, with warp
divergences or branches kept to a minimum. Thus, processing proceeds without
if statements or communications between different warps. This is achieved by
strided access patterns of patches and careful padding of shared memory, and is
critical to CLATCH’s high performance.

Specifically, patch comparisons are performed as follows. A warp simultane-
ously processes four triplets. Each thread (in a warp of 32 threads) performs two
squared-distance comparisons per triplets in the F-norm of Eq. 1. Then, fast
warp shuffle operations are used to quickly sum the result from all pixel pairs in
a novel, optimal manner. The original LATCH implementation used 7× 7 pixel
patches. We use 8 × 8 patches instead as this implies 64 values which can be
handled concurrently with no extra computation costs. To further optimize this
process, instruction level parallelism was exploited by manual loop unrolling and
carefully arranging operations to prevent stalls due to data dependency.
Weighing pixels in LATCH patches. Each pixel within a patch can option-
ally be given a unique weight at no overhead. This is due to the GPU’s emphasis
on cheap fused-multiply-add operations. We use this property to simulate the
original LATCH patch size of 7× 7 by setting the relevant weights to zero, ob-
taining the exact same representation as the original LATCH. Another potential

1 For brevity, only implementation highlights are provided. For more details, please
see the code available from: www.openu.ac.il/home/hassner/projects/LATCH.

www.openu.ac.il/home/hassner/projects/LATCH

The CUDA LATCH Binary Descriptor 7

use for this feature, not tested here, is applying Gaussian weights to patch pixels
thereby better emphasizing similarity at the patch center vs. its outer pixels.

4 SfM using CLATCH and OpenMVG

LATCH (and consequently CLATCH) were shown to be slightly less accurate
than some of the more computationally heavy, floating point descriptors. It is
not clear, however, how these differences in accuracy affect the overall accuracy
and speed of an entire, descriptor-intensive computer vision system.

To this end, we test CLATCH vs. other descriptors on the challenging task
of 3D SfM reconstruction. Our goal is to see how the final reconstruction and
the time required to compute it are affected by the choice of descriptor. We
use the OpenMVG, multiple view geometry library [20], modifying it to include
self-contained CUDA streams and a GPU based, brute force Hamming matcher.
These are detailed next.
CUDA Integration. The kernel launching mechanism employed by CUDA on
its default stream disables concurrent launches of feature detection kernels. We
therefore modified the CLATCH descriptor and matching code to exclusively
operate off of self-contained streams. Doing so allowed the GPU to concurrently
execute feature detection and description kernels across multiple images at once,
as well as perform feature matching.
Descriptor matching on the GPU. Our tests compare the use of our binary
descriptors with existing floating point representations. In all cases, we used
the GPU to compute the descriptor distances. Because CLATCH is a binary
representation, Hamming distance is used to compute similarity of CLATCH
descriptors. To this end, we developed our own GPU based Hamming distance
brute force matcher and integrated it into OpenMVG. To provide a fair compar-
ison, distances between floating point representations were computed using the
standard OpenCV GPU based L2 distance routine.

Each block of our Hamming-based brute force matching kernel processes half
a probe descriptor per thread, though each descriptor is distributed throughout
a half warp so that each thread holds parts of 16 probe descriptors. Gallery de-
scriptors are alternatively prefetched into and processed from two shared memory
buffers without intermediate synchronization. As the Hamming distance between
each pair of probe and gallery descriptors is computed, partial results are dis-
tributed through a half warp. This calls for a simultaneous reduction of several
independent variables, which minimizes the number of additions and warp shuf-
fles to be performed.

First, each thread halves the number of variables it must reduce by packing
two variables into the lower and upper 16 bits of a 32 bit integer. Then, pairs
of threads simultaneously exchange their packed variables in a warp shuffle,
and sum the result with their original variable. This results in pairs of threads
with variables holding identical values. The threads again pair off in the same
manner, but exchange and sum a different variable. The same pairs of threads
now have two variables with identical values, so the second of each pair of threads

8 C. Parker, M. Daiter, K. Omar, G. Levi and T. Hassner

overwrites the first packed variable with the second, before each thread discards
the second packed variable. This results in every thread in a warp having a unique
value in the same variable, which allows efficient participation in subsequent
warp shuffles until the reduction is complete. This novel method requires only
16 additions to compare 16 descriptor pairs, while the standard warp reduction
pattern would require 80.

5 Experiments

Descriptor extraction run time comparison. The CLATCH descriptor
is identical to LATCH and so their accuracy on different benchmarks are the
same. We therefore refer to the original paper for a comparison on standard
benchmarks of LATCH and other representations [18].

By using the GPU, CLATCH is much faster to extract. This is demonstrated
in Table 1, which provides a comparison of the run times reported for extracting
many popular existing feature point descriptors compared to CLATCH. We re-
port also the processor used to extract these representations and a price estimate
for the processor in case of GPU based methods.

Evident from the table is that even on affordable GPU hardware, extraction
run times are orders of magnitude faster than standard representations on the
CPU and even other GPU representations (the only exceptions are the far less
accurate CUDA ORB and the floating point representation CUDA SURF). PN-
Net [3] in particular, is designed to be a very fast deep learning based descriptor
method, yet even with more expensive GPU hardware, it is more than an order
of magnitude slower to extract than CLATCH. More importantly, all floating
point representations, including CUDA SURF and PN-Net, require more time
to match their bigger, real valued representations.

SfM results. We use the incremental SfM pipeline implemented in OpenMVG,
with its default values unchanged. We compared the following descriptors in
our tests: SIFT [19], often the standard in these applications, the deep learning
based features, DeepSiam and DeepSiam2Stream from [40], the fast deep feature
representations, PN-Net from [3] and our own CLATCH.

All descriptors used the CUDA FAST feature detector with the exception
of SIFT which, for technical reasons, used its default DOG based detector. Fol-
lowing incremental SfM, point cloud Densification [5], Mesh Reconstruction [15]
and Mesh Refinement [35] were applied to produce the final reconstructions vi-
sualized in Fig. 1.

Tests were performed on publicly available sets of high resolution photogram-
metry images from [23], which include 5, 616 × 3, 744 (or 3, 744 × 5, 616) pixels
in each image. Table 2 summarizes these results, providing the final scene repro-
jection RMSE and the total time for descriptor extraction, matching and SfM
reconstruction. All these tests were run on our GTX 1080 GPU.

Reconstruction run time is dominated by the brute force, nearest neighbor
matcher. Hence, the gaps in run times between the different methods are smaller

The CUDA LATCH Binary Descriptor 9

Descriptor Extraction µS GPU

SIFT [19] 3290 -
SURF [6] 2110 -
CUDA SURF [6]1 0.9 GTX 970M ($280 usd)
LDA-HASH [30] 5030 -
LDA-DIF [30] 4740 -
DBRIEF [34] 8750 -
BinBoost [16,33] 3290 -

BRIEF [8] 234 -
ORB [25] 486 -
CUDA ORB [25]1 0.5 GTX 970M ($280 usd)
BRISK [17] 59 -
FREAK [1] 72 -
A-KAZE [2] 69 -
LATCH [18] 616 -

DeepSiam [40]2,3 6580 Titan ($650 usd)
MatchNet [10]4 575 Titan X ($1,000 usd)
CNN3 [26]2 760 Titan Black ($1,100 usd)
PN-Net [3]2 10 Titan X ($1,000 usd)

Our CLATCH 0.5 GTX 970M ($280 usd)

Table 1: Run time analysis. Mean time in microseconds for extracting a single
local descriptor. For GPU descriptors we provide also the GPU models used to obtain
these results and their estimated price. CPU results were all measured by [18] on their
system. 1CUDA ports for SURF and ORB are implemented in OpenCV [14]; their
speeds were measured by us. 2Run times and hardware specs provided in the original
publications. 3Time for extracting and matching a descriptor pair was reported as ×2
SIFT extraction time. 4Run time reported in [3].

than those in Table 1. Nevertheless, reconstructions with CLATCH required a
fraction of the time for the runner up (PN-Net) and far less than the others.

Reprojection RMSE, is low for all methods and is typically around half a
pixel. Although these errors fluctuate between the different methods and scenes,
these differences are often below 0.1 pixels. Considering the high resolutions of
the input images, these differences are negligible.

Finally, Fig. 1 additionally provides qualitative results, showing rendered
views of our reconstructions. Evident from the figure is that despite large differ-
ences in run time, qualitatively, the reconstructions appear very similar.

6 Conclusions

In descriptor matching intensive application, such as SfM, accuracy per descrip-
tor is sometimes balanced by the speed required to extract and match the de-
scriptors. Taking advantage of this, we present CLATCH, a CUDA port for the
LATCH binary descriptor. Although CLATCH descriptor accuracy in standard
benchmarks may fall slightly behind other representations, particularly recent
deep learning based methods, they are far faster to extract and match. CLATCH
thereby provides a fast and accurate alternative means for 3D reconstruction.

From a technical point, an outcome of this work is openly available code for
extremely fast feature extraction and matching and a pipeline for SfM allow-
ing convenient interchange of feature descriptors, including deep methods. This

10 C. Parker, M. Daiter, K. Omar, G. Levi and T. Hassner

Avignon Bouteville Burgos Cognac Garden St. Jacques Mirebeau Murato Poitiers

Number of images 11 26 9 12 20 22 43 33

SfM Scene RMSE (in pixels)

SIFT [19] 0.475 0.405 0.495 0.438 0.498 0.478 0.533 0.690
DeepSiam [40] 0.533 0.489 0.422 0.566 0.535 0.489 0.533 0.547
DeepSiam2stream [40] 0.505 0.457 0.419 0.536 0.522 0.459 0.496 0.529
PN-Net [3] 0.538 0.462 0.493 0.554 0.536 0.482 0.531 0.533
Our CLATCH 0.556 0.414 0.466 0.478 0.409 0.466 0.494 0.454

Total time for descriptor extraction, matching and incremental SfM (in seconds)

SIFT [19] 174.30 454.13 143.728 155.61 296.431 401.64 958.778 1206.10
DeepSiam [40] 172.49 596.07 130.72 146.49 347.576 416.01 943.841 812.39
DeepSiam2stream [40] 269.39 922.95 226.123 301.67 628.03 739.629 1750.535 1379.80
PN-Net [3] 49.56 210.60 50.12 56.02 122.29 167.51 372.28 311.18
Our CLATCH 18.91 69.07 15.907 19.089 27.877 47.534 86.377 61.868

Table 2: Quantitative SfM reconstructions. Results on the eight scenes from [23],
comparing various representations with our CLATCH. We report reprojection errors
and the time required to extract, match and estimate shape for the various descriptors.
All results measured on the same hardware. CLATCH run times are substantially faster
than its alternatives despite similar qualitative results (see Fig. 1.)

implementation can be improved in many ways. For one thing, our use of the
FAST detector [24] does not provide scale invariance. CLATCH, however, can
easily be extracted at multiple scales, potentially improving its accuracy. Use of
CLATCH in other applications where descriptors are extracted and matched in
large quantities, is also a priority. One particularly appealing example is dense
pixel matching [12,31] where the CLATCH may be an alternative to methods
such as PatchMatch [5], providing similar run times without compromising spa-
tial smoothness.

References

1. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: Proc. Conf.
Comput. Vision Pattern Recognition. pp. 510–517. IEEE (2012)

2. Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated
features in nonlinear scale spaces. In: British Machine Vision Conf. (BMVC) (2013)

3. Balntas, V., Johns, E., Tang, L., Mikolajczyk, K.: PN-Net: Conjoined triple deep
network for learning local image descriptors. arXiv preprint arXiv:1601.05030
(2016)

4. Balntas, V., Tang, L., Mikolajczyk, K.: BOLD-binary online learned descriptor for
efficient image matching. In: Proc. Conf. Comput. Vision Pattern Recognition. pp.
2367–2375 (2015)

5. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: PatchMatch: a random-
ized correspondence algorithm for structural image editing. Trans. on Graphics
28(3), 24 (2009)

6. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Euro-
pean Conf. Comput. Vision, pp. 404–417. Springer (2006)

7. Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors.
Trans. Pattern Anal. Mach. Intell. 33(1), 43–57 (2011)

The CUDA LATCH Binary Descriptor 11

Fig. 1: Qualitative SfM reconstructions. Results showing the output of the same
SfM pipeline on five of the eights scenes from [23], comparing the use of SIFT [19],
Siam and Siam2Stream from [40], PN-Net [3] and our CLATCH. These results show
only minor differences in output 3D shapes, despite the substantial difference in run
time required for the different representations (see Table 2).

8. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent
elementary features. In: European Conf. Comput. Vision, pp. 778–792. Springer
(2010)

9. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. Trans.
Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

10. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: unifying feature
and metric learning for patch-based matching. In: Proc. Conf. Comput. Vision
Pattern Recognition. pp. 3279–3286 (2015)

11. Hassner, T., Assif, L., Wolf, L.: When standard RANSAC is not enough: cross-
media visual matching with hypothesis relevancy. Machine Vision and Applications
25(4), 971–983 (2014)

12. Hassner, T., Liu, C.: Dense Image Correspondences for Computer Vision. Springer
(2015)

13. Heymann, S., Müller, K., Smolic, A., Froehlich, B., Wiegand, T.: SIFT implemen-
tation and optimization for general-purpose GPU. In: WSCG (2007)

14. Itseez: Open source computer vision library. https://github.com/itseez/opencv
(2015)

15. Jancosek, M., Pajdla, T.: Exploiting visibility information in surface reconstruction
to preserve weakly supported surfaces. International Scholarly Research Notices
2014 (2014)

16. Lepetit, V., Trzcinski, T., Fua, P., Christoudias, C.M., et al.: Boosting binary
keypoint descriptors. In: Proc. Conf. Comput. Vision Pattern Recognition (2013)

17. Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary robust invariant scalable
keypoints. In: Proc. Int. Conf. Comput. Vision. pp. 2548–2555. IEEE (2011)

18. Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes. In:
Winter Conf. on Applications of Comput. Vision (2016)

https://github.com/itseez/opencv

12 C. Parker, M. Daiter, K. Omar, G. Levi and T. Hassner

19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

20. Moulon, P., Monasse, P., Marlet, R., Others: Openmvg. an open multiple view
geometry library. https://github.com/openMVG/openMVG

21. Mur-Artal, R., Montiel, J., Tardós, J.D.: ORB-SLAM: a versatile and accurate
monocular slam system. Trans. on Robotics 31(5), 1147–1163 (2015)

22. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image
classification. In: European Conf. Comput. Vision. pp. 490–503. Springer (2006)

23. Perrot, R.: Set of images for doing 3D reconstruction. https://github.com/

rperrot/ReconstructionDataSet

24. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
European Conf. Comput. Vision. pp. 430–443. Springer (2006)

25. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to
sift or surf. In: Proc. Int. Conf. Comput. Vision. pp. 2564–2571. IEEE (2011)

26. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.:
Discriminative learning of deep convolutional feature point descriptors. In: Proc.
Int. Conf. Comput. Vision. pp. 118–126 (2015)

27. Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using
convex optimisation. Trans. Pattern Anal. Mach. Intell. (2014)

28. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: GPU-based video feature track-
ing and matching. In: Workshop on Edge Computing Using New Commodity Ar-
chitectures. vol. 278, p. 4321 (2006)

29. Strasdat, H., Montiel, J.M., Davison, A.J.: Visual SLAM: why filter? Image and
Vision Computing 30(2), 65–77 (2012)

30. Strecha, C., Bronstein, A.M., Bronstein, M.M., Fua, P.: Ldahash: Improved match-
ing with smaller descriptors. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34(1), 66–78 (2012)

31. Tau, M., Hassner, T.: Dense correspondences across scenes and scales. Trans. Pat-
tern Anal. Mach. Intell. (2014), to appear.

32. Terriberry, T.B., French, L.M., Helmsen, J.: GPU accelerating speeded-up robust
features. In: Proc. Int. Symp. on 3D Data Processing, Visualization and Transmis-
sion (2008)

33. Trzcinski, T., Christoudias, C.M., Lepetit, V.: Learning image descriptors with
boosting. Tech. rep., Institute of Electrical and Electronics Engineers (2013)

34. Trzcinski, T., Lepetit, V.: Efficient discriminative projections for compact binary
descriptors. In: European Conf. Comput. Vision, pp. 228–242. Springer (2012)

35. Vu, H.H., Labatut, P., Pons, J.P., Keriven, R.: High accuracy and visibility-
consistent dense multiview stereo. IEEE transactions on pattern analysis and ma-
chine intelligence 34(5), 889–901 (2012)

36. Warn, S., Emeneker, W., Cothren, J., Apon, A.: Accelerating SIFT on parallel
architectures. In: Int. Conf. on Cluster Computing and Workshops (Aug 2009)

37. Wu, C.: SiftGPU: A GPU implementation of scale invariant feature transform
(SIFT). cs.unc.edu/~ccwu/siftgpu

38. Yang, X., Cheng, K.T.: Ldb: An ultra-fast feature for scalable augmented real-
ity on mobile devices. In: Mixed and Augmented Reality (ISMAR), 2012 IEEE
International Symposium on. pp. 49–57. IEEE (2012)

39. Yang, X., Cheng, K.T.: Local difference binary for ultrafast and distinctive feature
description. Trans. Pattern Anal. Mach. Intell. 36(1), 188–194 (Jan 2014)

40. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolu-
tional neural networks. In: Proc. Conf. Comput. Vision Pattern Recognition (2015)

https://github.com/openMVG/openMVG
https://github.com/rperrot/ReconstructionDataSet
https://github.com/rperrot/ReconstructionDataSet
cs.unc.edu/~ccwu/siftgpu

