
2
Journal of Real Time Image Processing manuscript No.
(will be inserted by the editor)

Gil Shapira · Tal Hassner

Fast and Accurate Line Detection with GPU-Based Least
Median of Squares

Received: date / Revised: date

Abstract We propose an accurate and efficient 2D line
detection technique based on the Standard Hough Trans-
form (SHT) and Least Median of Squares (LMS). We
prove our method to be very accurate and robust to noise
and occlusions by comparing it with state of the art line
detection methods using both qualitative and quantita-
tive experiments. LMS is known as being very robust but
also as having high computation complexity. To make
our method practical for real time applications, we pro-
pose a parallel algorithm for LMS computation which is
based on point-line duality. We also offer a very efficient
implementation of this algorithm for GPU on CUDA ar-
chitecture. Despite the many years since LMS methods
have first been described and the widespread use of GPU
technology in computer vision and image processing sys-
tems, we are unaware of previous work reporting the use
of GPUs for LMS and line detection. We measure the
computation time of our GPU accelerated algorithm and
prove it is suitable for real time applications. Our accel-
erated LMS algorithm is up to 40 times faster than the
fastest single threaded CPU based implementation of the
state of the art sequential algorithm.

Keywords Robust Regression · Least Median of
Squares (LMS) · GPGPU · Line Detection · Image
Processing · CUDA · Duality · Hough Transform

1 Introduction

Detecting lines in image data is a basic task in pattern
recognition and computer vision, and it is used for both

Gil Shapira
Department of Mathematics and Computer Science, The
Open University of Israel, Israel
Samsung Israel Research Center (SIRC) E-mail:
gil.shapira@samsung.com

Tal Hassner
Department of Mathematics and Computer Science, The
Open University of Israel, Israel E-mail: hassner@openu.ac.il

data reduction and pre-processing before higher level vi-
sual inference stages. Most existing line detection meth-
ods are variants of the SHT. The reader is referred to [23]
for a recent survey on HT and its variants.

Despite its popularity, SHT has some well known
shortcomings in that quantization errors appear in both
the input image and in the voting accumulator. The
higher the resolution of the voting accumulator, the more
adverse the effect of quantization errors will be [35]. In
a high resolution voting accumulator, each feature point
votes for many cells. This causes the spreading of votes
on a large area with no distinct single peak, which, in
turn, leads to inaccurate peak detection. Many meth-
ods have been devised to overcome this problem (see
Sec. 2 for more detail). High resolution SHT also suffers
from high memory and computation complexity. To ad-
dress the time performance problem, several randomiza-
tion variants have been suggested and special hardware
has been used to ensure fast implementation.

Robust estimators are used to detect lines in noisy
images due to their ability to handle outlying data
points. The robustness of these estimators is measured by
their breakdown point, which is the fraction of outlying
data points that are required to corrupt the estimator’s
accuracy. Least median of squares (LMS) is one such ro-
bust method. Intuitively, if more than half of the points
are inliers, then LMS cannot be affected by the higher
order statistics residuals. In this case, the outliers can
be arbitrarily far from the estimate without disturbing
the estimate. The LMS estimator has been used exten-
sively in many applications in a wide range of fields and
it is considered to be a standard technique in robust data
analysis. To date, and despite the many years since its
original release, the Rousseeuws LMS regression (line)
estimator [29] remains the most popular and well-known
50% breakdown-point estimator. Despite this robustness,
LMS is seldom used in practical applications for line de-
tection due to its high complexity requirements.

Our goal in this work is to overcome the limita-
tions of SHT and to devise a line detection method that
is fast, accurate, and resilient to noise. Our contribu-

3

tion is as follows: We suggest a novel 2D line detec-
tor based on low resolution SHT and LMS. To make
LMS practical in real-world applications, we reduce its
computation time dramatically by using a parallel al-
gorithm implemented on the graphical processing unit
(GPU). We prove that our compute unified device ar-
chitecture (CUDA) based algorithm is faster than a sin-
gle thread CPU implementation of the fastest sequen-
tial algorithm, by up to a factor of 40. Beyond its use
here for line detection, our fast LMS implementation is
highly applicable on its own in a wide range of appli-
cations, for computer vision, image processing, and ro-
bust statistics. To encourage reproducible research, we
have shared our implementation of the algorithm on-
line https://github.com/ligaripash/CudaLMS2D.git

2 Related work

SHT high computational demand has led to an extensive
effort to reduce its computational complexity by various
means. Hardware acceleration of SHT is offered by many
authors using various hardware architectures. For exam-
ple, [22] and [15] suggest a HT system accelerated by
FPGA and [18, 14] and [36] propose an acceleration al-
gorithm based on the GPU. HT can also be accelerated
using randomization: the two most popular variants are
Randomized HT [37] and Probabilistic HT [19]. These
methods trade a small amount of detection accuracy for
improved computation speed. Although they are fast,
these methods are not robust against noise (see [24]).

Sub-image methods have also been used to manage
HT high computational demand. These methods increase
the voting unit from one pixel in SHT to a collection of
pixels, forming a sub-image; as in [13] and [31]. Among
this class of HT variants, the work by [10] stands out in
both accuracy and speed. Consequently, we use this as a
baseline method in our experiments.

SHT also suffers from an accumulator peak localiza-
tion problem. Uniform parameter sampling along with
image quantization, sensor noise, and optical distortion
cause the votes in the accumulator to spread. Conse-
quently, locating the peak becomes a challenging task.
The problem is aggravated when δρ and δθ become
smaller [24] (see Alg. 1 for the definitions of these pa-
rameters). The accumulator votes tend to form a typical
butterfly pattern and many scholars have tried to analyze
this pattern and find the correct peak [17, 11, 1].

We call our method the Hough Transform-Cuda
based Least Median of Squares (HT-CLMS) line
detection method. In our HT-CLMS solution, the ac-
cumulator resolution is defined by the line separation
requirements and not by line accuracy as in SHT. This
facilitates the use of a coarse HT accumulator that is
fast, consumes a small amount of memory, and does not
suffer from quantization problems.

LMS Algorithms. Stromberg [34] provided one of the
early methods for exact LMS with a complexity of
O(nd+2 log n), where d is the dimension of the points.
More recently, Erickson et al. [8] describe a LMS algo-
rithm with a running time of O(nd log n).

Souvaine and Steele [32] designed two exact al-
gorithms for LMS computation. Both algorithms are
based on point-line duality. The first constructs the
entire arrangement of the lines dual to the n points,
and requires O(n2) time and memory space. The second
sweeps the arrangement with a vertical line, and requires
O(n2 log n) time and O(n) space. Edelsbrunner and
Souvaine [7] have improved these results and give a
topological sweep algorithm that computes the LMS in
O(n2) time and O(n) space. To our knowledge, however,
no GPU-based or other parallel algorithm for computing
LMS regression has since been proposed.

Alongside these theoretical results, recent maturing
technologies and plummeting hardware prices have led
massively parallel GPUs to become standard compo-
nents in consumer computer systems. Noting this, we
propose an exact, fast, CUDA based, parallel algorithm
for 2D LMS computation. Our method provides a highly
efficient and practical alternative to the traditional, com-
putationally expensive LMS methods.

3 Our proposed line detection approach

Our proposed approach addresses the two basic problems
with SHT:

– Its inaccuracy in high resolution due to peak spread-
ing, and

– its high computational cost in the voting process
when using a high resolution accumulator.

We propose to address both of these issues by follow-
ing up the process performed by the SHT with a LMS
method, as described in Alg. 1 and in Fig. 1

The rational here is simple: we use a low resolution
accumulator to avoid the peak splitting phenomenon
that is attributed to high resolution SHT [35]. Thus,
each coarse cell will contain votes from all of the fea-
ture points that reside on this line, as well as point votes
due to noise or other line structures. As long as the true
line votes comprise of the majority of the votes in that
cell, LMS guarantees that none of the outlying data will
corrupt the line estimate.

To illustrate this point, Fig. 2 shows a line segment
sampled with probability 0.5 with random noise. The
accumulator resolution is coarse with δρ = 20, δθ = 20.
All of the points that voted for the peak accumulator
cell are marked in purple. Notice that the line could be
accurately recovered in spite of many outliers.

The low resolution here determines the minimal sepa-
ration between the lines and not the detection accuracy;

4

Low Resolution

SHT

Locate peaks in SHT

accumulator

Locate all points in a sleeve

defined by each maxima

 Compute LMS estimator for all points

in the sleeve using our parallel CLMS

algorithm

Edge Detector

Fig. 1 Block diagram of our HT-CLMS (Please see Alg. 1).
The input noisy meteor image is at the top left. The input
image goes through the canny edge detector. At the next
stage a low resolution SHT is applied and local maximas are
located. For each maxima a matching sleeve is located in
the edge map (right column, middle row). All edge points in
the sleeve are extracted and fed to our fast parallel CLMS
algorithm which recover the correct meteor line in spite of
many outliers.

input : I - input image, N - minimum number of
supporting points for each line, δθ -
minimum polar degree difference between
two lines, δρ - minimum radial distance
between two lines in the image.

output: All lines with N supporting points or
more

1 Compute an edge map for input image I.
2 Apply SHT to the input edge map using a low

resolution polar coordinate line voting
accumulator [6].

3 Extract all peaks with more than N votes.
4 foreach peak do
5 retrieve all feature points voting for it by

searching the corridor in the edge map
defined by the specific accumulator bin.

6 Perform our novel fast CUDA based LMS
regression (CLMS) to extract an accurate line
fit for these feature points.

7 Output the computed line parameters
8 end

Algorithm 1: Our HT-CLMS line detection.

that is, if two lines exist in the input image (ρ1, θ1) and
(ρ2, θ2) and the accumulator bin size is (dρ, dθ), then if
|ρ1−ρ2| < dρ and |θ1−θ2| < dθ, and then both lines will
cast votes to the same cell and after the LMS operation
only one line will be detected.

HT-CLMS can be integrated with other HT vari-
ants that uses accumulator peaks to recover the feature
points voting for the line (e.g., the progressive probabilis-
tic Hough Transform (PPHT) [12]). This can be done by
replacing the regular least square used by these methods
with LMS.

Our experiments with this method show it to be very
robust and accurate. The current state of the art com-
plexity for LMS computation, demonstrated by by Ed-
delsbrunner and Souvaine [7], has O(n2) time complex-
ity. Such computational load is inadequate for real time
applications, thereby prohibiting the use of LMS for line
detection. To mitigate this problem, we show how LMS
can be efficiently computed on a GPU.

Fig. 2 Synthetic image with random noise probability =
0.002 and line sampling probability = 0.5. The purple cir-
cles are points which voted for the Hough cell with maximum
votes. δρ = 20, δθ = 20. The LMS line for the purple points
is marked in red. The SHT line is marked in green. Less than
half of the supporting features are attributed to noise and so
our CLMS regression estimation is accurate.

3.1 Fast CUDA method for 2D LMS (CLMS)

Our algorithm is based on point-line duality and search-
ing line arrangements in the plane. Point-line duality has
been shown to be very useful in many efficient algorithms
for robust statistical estimation problems (e.g., [4, 5, 7, 8]
and [32]). We begin by offering a brief overview of these
techniques and their relevance to the method presented
in this paper.

Geometric interpretation of LMS. By definition, the
LMS estimator minimizes the median of the squared
residuals. Geometrically, this means that half of the

5

Fig. 3 LMS geometric interpretation: computing an LMS
regression line is equivalent to finding a slab that contains at
least half the input points and whose intersection with the
y-axis is the shortest. d denotes the LMS.

points reside between two lines, parallel to the estima-
tor. Assume d to be the least median of squares, one of
the lines is in distance

√
d above the estimator, and the

other is in distance
√
d below the estimator. The area

enclosed between these lines is called a slab. Computing
the LMS estimator is equivalent to computing a slab of
minimum height. The LMS estimator is a line that bi-
sects this slab, see Fig. 3. Steel and Steiger [33] showed
that for the LMS slab, one of its bounding lines must
contain at least two input points and the other must
contain at least one input point. Based on this fact and
point-line duality, finding the LMS slab dualizes to find-
ing the minimum vertical segment which intersects n/2
lines and hangs on an intersection of two lines on one
end and on a dual line on the other end [33]. Vertical
segments in the dual are called bracelets and the min-
imum length bracelet that intersects n/2 lines is called
the LMS bracelet (see Fig. 4 for an illustration of these
concepts.)

Our proposed parallel LMS. The current state of the
art algorithm for LMS computation was purposed by Ed-
delsbrunner and Souvaine [7]. They proposed a topologi-
cal sweep approach which traverses the dual line arrange-
ments and finds the LMS bracelet in O(n2) and O(n)
space. Noting that their sweep line technique is sequen-
tial by nature and that the computations of bracelets
are independent on one another, we propose to compute
all of the bracelets that hang on an intersection point
in parallel, and we then use the parallel reduce opera-
tion to find the minimum length bracelet. The algorithm
pseudo-code is presented in Alg. 2.

Algorithm Correctness. As proven by Steel and
Steiger [33], it is assured that the minimum bracelet
has one end on the intersection of two lines. The algo-
rithm exhaustively searches for all bracelets that have

Fig. 4 LMS in the dual plane. The bottom figure depicts
the primal plane with a set of points and the LMS slab. The
top figure depicts the dual plane. The black points dualize to
black lines in the upper figure. The LMS slab passes through
the red points in the primal which correspond to red lines
in the dual plane. The intersection points of the red lines
in the dual correspond to the LMS slab lines in the primal.
Finding the LMS slab in the primal plane dualizes to finding
the minimal vertical segment that intersects n/2 lines (the
LMS bracelet)

this property and therefore must find the global mini-
mum bracelet. The algorithm is consequently correct.

Algorithm performance. Assuming a Parallel Ran-
dom Access Machine (PRAM) model [28] and a paral-
lel machine with unbounded number of processors, par-
allel computation of all the points duals (lines 1–3 in
Alg. 2) takes O(1) time (each processor computes one
point dual).

Computing the intersection points of all line pairs
(lines 4–7) also requires O(1) time (each processor com-
putes the intersection point of one pair of lines). For
each intersection point, we find the intersection of all
the lines with a vertical line that passes through the in-

6

input : Set P of points, P ⊂ <2

output : The LMS regression line and slab
height

1 foreach point pi ∈ P parallel do
2 compute its dual li and insert to L
3 endfch
4 foreach pair of lines li, lj ∈ L(i 6= j) parallel

do
5 compute the intersection point ipi,j
6 I ← ip
7 endfch
8 foreach intersection point ip ∈ I parallel do
9 foreach l ∈ L parallel do

10 compute the intersection point x of l
with the vertical line that pass
through ip.

11 X ← x.
12 endfch
13 Parallel sort the points in X by their y

coordinate.
14 Assume that point ip has order k in the

sorted sequence.
15 BraceletSecondPoint←

X[(k + |P |
2

) mod |P |]
16 save the found bracelet data for the current

intersection point ip in an array
BraceletArray

17 endfch
18 Use parallel reduction to find the minimum

length bracelet on BraceletArray
19 Translate minimal bracelet data back to the

primal plane and return LMS regression line
equation and slab height.

Algorithm 2: Pseudo code for our proposed
parallel LMS method (CLMS).

tersection point (lines 9–12). This is also a O(1) time
task. A bitonic parallel sorter (line 13) takes O(log2n)
(see Batcher [2]). On the final step, a parallel reduction
(line 18) is performed on an array in the size of the num-
ber of intersection points, which is O(n2). This paral-
lel reduction takes O(log n) time. The overall time com-
plexity, therefore, equals the time of the bitonic sorter:
T∞ = O(log2n). This should be compared to the optimal
sequential algorithm, which requires O(n2) time.

The total work required by the algorithm is sorting n
elements for each of the O(n2) intersection points, which
amounts to O(n3 log n) computations. This also equals
the time complexity T1 of the algorithm running on one
processor. On a machine with a bounded number of pro-
cessors, the time complexity is asymptotically equal to
T1; hence, for large input size, the parallel version is ex-
pected to do worse than the optimal O(n2) sequential
algorithm but for practical input size for line detection
we demonstrate that the parallel version is 20 to 40 times
faster than the single threaded state of the art.

Finally, the space complexity of our method is O(n2)
because we must save all of the intersection points in
an array. Depending on GPU memory, this currently re-
stricts LMS computation to no more than a few thousand

Fig. 5 The thread grid for computing line intersections. Each
thread block has 8 × 8 threads. In the grid there are n

8
× n

8
thread blocks. Thread ti,j calculates the intersection of line i
with line j. n = |L|

points. This limitation can be mitigated by working on
small batches of intersection points. We leave this exten-
sion for future work.

3.2 Details of the CUDA Implementation

In accordance with Sanders and Kandrot [30], we set the
following design goals so that we can achieve optimal
performance using the CUDA platform:

– Maximize occupancy,
– Memory coalescence - adjacent threads calls adjacent

memory locations, and
– bank conflict free, shared memory access pattern.

The first part of Alg 2 (line 8) requires us to calculate
the intersection point of each pair of lines. To do that in
CUDA, we create the following thread hierarchy. Each
thread block contains 8×8 threads and each grid contains

a |L|8 ×
|L|
8 thread block. This creates the thread structure

that is displayed in Fig. 5.
Here, memory access is coalesced as thread ti,j reads

line li and lj while the next thread in the row ti,j+1 reads
li and lj+1, which resides right next to lj in the line array.
To prevent redundant access to global memory, threads
in the first row and first column of each thread block read
the respected lines from global memory to the shared
memory of the block. This saves 2 × (64 − 2 × 8) = 96
global memory access per block. To avoid computing the
line intersections twice, only threads ti,j where i > j
perform the computation while the rest do nothing. Each

7

Fig. 6 The thread structure for bracelet calculation per in-
tersection point. Each thread block computes the bracelet
for its designated intersection point. The thread grid con-

tains n×(n−1)
2

thread blocks. Each thread block contains n
threads.

thread computes the intersection of two lines in L with
the vertical line passing through its intersection point.
The intersection points are stored in shared memory.

In the second part of the algorithm, we compute the
bracelet that hangs on every intersection point that we
found earlier (see Alg. 2, lines 8–17). To this end, we as-
sign a thread block to compute each bracelet (see Fig. 6).

Thread block dimension is set to (1, |L|2). Each thread
computes the intersection points of two lines from L,
where the vertical line which passes through the inter-
section point assigned to the thread block. Later, the
thread block performs a fast parallel bitonic sort [26]. A
parallel bitonic sort operates only on power of two data
items and so we allow only power of two input size. When
the input size does not meet this requirement, this lim-
itation can be easily dealt with by padding. The thread
grid has dimension (k, 1) where k is the number of point

intersections (k = n×(n−1)
2).

4 Implementation and results

To evaluate our method, we performed four types of ex-
periments:

1. Quantitative experiments to assess the accuracy of
HT-CLMS recovered line parameters using synthetic
images (Sec. 4.1).

2. Qualitative experiments with real world images and
various line detection applications (Sec. 4.2)

3. Quantitative tests on real images (Sec. 4.3).
4. Runtime evaluation of CLMS (Sec. 4.4).

4.1 HT-CLMS accuracy on synthetic images

We have created four sets of images. Each set contains
500 binary, synthetic images with 200x200 pixels. Each
image contains one line segment with randomized end
points. Random noise is added on various levels and
used to perturb pixels on the lines. A varying fraction
of the segment points are moved one pixel in a direction
perpendicular to the segment. A sample input image is
shown in Fig. 6. The normal parameters (θ, ρ) are calcu-
lated and saved as ground truth. Each set is character-
ized differently by a combination of three parameters:

– n: The number of noise pixels in the image
– q: Hough space quantization resolution (δρ = δθ =
q),

– t: The fraction of point shifted one pixel in a direction
perpendicular to the segment.

The input images are created with different amounts
of random noise and line perturbations. We have created
four noise categories:

– No noise (n = 0, t = 0),
– Low noise (n = 400, t = 0.2, PSNR = 20.00 dB),
– Medium noise (n = 700, t = 0.25, PSNR = 17.57 dB),
– High noise (n = 1000, t = 0.3, PSNR = 16.02 dB).

We compare four line detection methods:

1. SHT. We measure the detection accuracy with three
accumulator quantization values: low quantization
(q = 0.5), medium quantization (q = 1) and high
quantization (q = 3). We use the standard OpenCV
implementation for this method [16].

2. Least Square Fitting (LSF). This methods uses ordi-
nary least square to fit a line to the pixels which voted
to the line defined by SHT. we use two quantization
levels: q = 1 and q = 3.

3. KHT. A popular HT based line detection
method [10]. The algorithm was tested with
the parameters recommended by its authors. The
implementation for this algorithm is supplied by
others [9].

4. HT-CLMS. Our proposed method.

We test all algorithms with a range of typical param-
eters. The line parameters estimated by each algorithm
were compared with the ground truth, and the detection
errors in both ρ and θ were recorded. The results are
given in Table 1. To statistically validate the superior ac-
curacy of our method, we conduct a paired Two-Sample
t-test between the ρ error distribution of HT-CLMS and
the ρ error distribution of every other method. The null
hypothesis is that the error distributions are the same.
The p-values depicted in Table. 2 show that given the
null hypothesis the probability of the data is negligible,
hence we reject the null hypothesis and conclude that
HT-CLMS accuracy is significantly higher than the ac-
curacy of every other method in every noise level.

8

Table 1 Comparison of the accuracy of the line detection methods. Detection Errors (ρ, θ) are provided for various line
detection methods under variable noise levels. HT-CLMS is the most accurate and robust to noise.

Noise Level
Line Detection Method

SHT (q=1) SHT(q=3) SHT(q=0.5) LSF(q=1) LSF(q=3) KHT
Our HT-CLMS
(q=3)

No Noise
Avg Error (0.26, 0.33) (0.74, 0.88) (0.26, 0.16) (0.02, 0.04) (0.02, 0.04) (0.23, 0.26) (0.15, 0.2)
Error STD (0.19, 0.22) (0.55, 0.60) (0.15, 0.14) (0.04, 0.06) (0.04, 0.06) (0.14, 0.16) (0.12, 0.18)

Low Noise
Avg Error (0.25, 0.33) (0.75, 0.87) (0.27, 0.20) (0.19, 0.15) (0.32, 0.43) (0.32, 0.58) (0.12, 0.16)
Error STD (0.18, 0.23) (0.52, 0.60) (0.18, 0.21) (0.1, 0.15) (0.31, 0.46) (0.29, 0.63) (0.13, 0.14)

Medium
Noise

Avg Error (0.28, 0.35) (0.8, 0.93) (0.29, 0.24) (0.25, 0.21) (0.42, 0.58) (0.39, 0.68) (0.11, 0.16)
Error STD (0.22, 0.25) (0.54, 0.61) (0.22, 0.26) (0.16, 0.21) (0.41, 0.50) (0.31, 0.70) (0.13, 0.18)

High Noise
Avg Error (0.29, 0.37) (0.77, 0.93) (0.29, 0.25) (0.32, 0.23) (0.46, 0.62) (0.49, 1.12) (0.13, 0.18)
Error STD (0.23, 0.28) (0.56, 0.67) (0.27, 0.31) (0.17, 0.23) (0.43, 0.58) (0.61, 1.40) (0.16, 0.27)

Table 2 p-values of Two-sample Paired t-test. We compare the ρ error distribution of each algorithm to the ρ error
distribution of HT-CLMS in various noise levels. The null hypothesis is that the error distributions are the same. The p-
value below show that given the null hypothesis, the probability of the data is negligible. Hence we reject the null hypothesis
and conclude that HT-CLMS accuracy as depicted in Table. 1 is significantly higher than the other methods.

Line Detection Method

Noise Level SHT (q=1) SHT (q=3) SHT (q=0.5) LSF (q=1) LSF (q=3) KHT

Low 4.3× 10−37 7.3× 10−119 1.1× 10−47 3.5× 10−21 3.7× 10−38 5.1× 10−42

Medium 2.1× 10−46 2.9× 10−129 2.0× 10−51 3.0× 10−51 2.5× 10−53 3.0× 10−68

High 1.7× 10−27 4.1× 10−107 5.0× 10−29 1.2× 10−65 3.9× 10−53 1.8× 10−35

Several interesting observations can be made from
our results.

First, for an image with no noise, LSF is the most ac-
curate. This is probably due to the fact that line quan-
tization errors spread evenly with respect to the ideal
line thus errors cancel out resulting in a very accurate
line estimation. Second, KHT is less accurate than SHT
with q=1. Next, the accuracy of LSF(q=1) degrades
severely as noise level increases. Also, high resolution
HT (q=0.5) has comparable accuracy to HT(q=1) due
to peak spreading. Finally, our HT-CLMS is the most ac-
curate method when adding noise in all levels. In fact, ro-
bustness to noise and line estimation parameters hardly
changes with respect to noise levels.

To better illustrate our findings, we show the accu-
racy measured on 50 lines in high and medium noise con-
ditions. Specifically, Fig. 7 provides detection errors for
high noise images and Fig. 8 for medium noise images.

Real time applications optimize for both accuracy
and computation time. Fig. 9 illustrates the joint accu-
racy and computation time for the various algorithms.
From this diagram it is evident that HT-CLMS exhibit
good trade-off between computation time and accuracy.

4.2 Qualitative results on real world images

We test our line detection method on the following three
applications. In all of these applications, ground truth
was not available for measuring performances.1 For all of

1 Additional results for the three applications are provided
in the supplemental.

these applications, the accumulator cell radial size (dρ)
and polar size (dθ) were chosen using the following ratio-
nal: As explained in Sec. 3, the points taken for CLMS
regression are the points that voted for an accumulator
cell. If the cell is large (a low resolution accumulator)
more points could fall into any one call and vice versa.
If the the cell is too large (resolution is too low) a single
cell may be assigned points from separate lines and this
will corrupt the LMS estimate. If the cell is too small
then cells may not be assigned sufficiently many points
to produce an accurate LMS line estimate. In our tests,
we therefore set the accumulator resolution values (accu-
mulator cell size upper bound) to be the minimal radial
and polar distance between the lines we wish to detect.

– Perseids meteor detection. This is a problem of in-
terest to the planetary and space communities [25].
Meteor images typically suffer from low light condi-
tions. To locate the trail of light left by meteorite,
we threshold the input image and then detect the
longest line in the image. The meteor images contain
one meteor per image hence N=1. Perseids images
usually contain only one line (perseid) per image so
the dρ and dθ can be arbitrarily large. The values
dρ = 2, dθ = 2 were used as they are high enough
to capture all the pixels which belong to the perseids
but higher values work equally well. Our results are
provided in Fig. 10.

– Horizon detection. This problem often occurs when
analyzing maritime video data. The input image is
pre-processed with the Canny edge detector and only
the longest line is reported (N=1). As in the Perseids
application these images contain only one true line

9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

D
et

ec
ti

o
n

 E
rr

o
r

(ρ
)

HT_CLMS
SHT
LSF
KHT

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

D
et

ec
ti

o
n

 E
rr

o
r

(θ
)

HT_CLMS
SHT
LSF
KHT

Fig. 7 Comparison of detection error in high noise images

(the horizon line). and hence the values dρ = 2, dθ =
2 were chosen by the same considerations. The results
are provided in Fig. 11. The proposed line detection
method finds horizon lines robustly despite sea waves
and other sources of noise which can clutter image
edges.

– Road lane detection in low light conditions. To report
our results for this important application, we used the
image sequence published as Set 1 in EISATS [20].
This set is a night vision image sequence taken from
a moving car. As expected, this night vision sequence
is characterized by low light and high noise. Its im-
ages are therefore challenging test cases for our robust
line detection method. For this application, we used
the canny edge detector on the bottom half of the
image (which typically contains the road) and then
extracted the four longest lines (N=4) using our HT-
CLMS method. We’ve found that for this application
the polar and radial distance between the closest lines
we wish to detect is more than (dρ = 2, dθ = 2) so
these values were chosen. The results are depicted in
Fig. 12

4.3 Quantitative real world results

We used two data sets to quantitatively test out HT-
CLMS. The first data set was provided by Candamo et
al. [3]. It contains 5576 manually annotated images of
thin obstacles such as cables power lines and wires. Some
of the samples are challenging as can be seen in Fig. 13.
We tested both our HT-CLMS and the popular KHT
algorithm on this data set. We consider a ground truth
line as detected by an algorithm if its normal parameters
error θerr and ρerr are below a fixed threshold. We col-
lected line errors only when the line has been detected
by both and HT-CLMS and KHT. The Cumulative Error

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

D
et

ec
ti

o
n

 E
rr

o
r(
ρ
)

HT_CLMS

SHT

LSF

KHT

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

D
et

ec
ti

o
n

 E
rr

o
r

(θ
)

HT_CLMS

SHT

LSF

KHT

Fig. 8 Comparison of detection error in medium noise im-
ages

SHT(q=1)

SHT(q=3)

SHT(q=0.5)

LSF(q=1)

LSF(q=3)

HT-

CLMS(q=3) KHT
1

6

11

16

21

26

0.1 0.3 0.5 0.7 0.9 1.1 1.3

C
o
m

p
u

ta
ti

o
n

 T
im

e
[m

s]

Average Error in θ [degrees]

Fig. 9 Average error in θ vs. computation time for various
line detection algorithms on images with high noise values.
HT-CLMS is both fast and accurate.

Distribution (CED) graph for θerr is shown in Fig. 14.
HT-CLMS is more accurate than KHT on this dataset.

The second data set we used is the York Urban Line
Segment Database [21]. These images include both in-
door and outdoor scenes. In each image, the vertical and
horizontal lines are manually labeled. Note that man-
ual labeling has some discrepancy relative to the edges
found by an edge detector, as demonstrated in Fig. 15,
the main discrepancy is shown to be in the radial direc-
tion. To facilitate meaningful measurements we manually
re-annotated the ground truth data.

Fig. 16 provides an example test image with the
ground truth line segments marked in blue and estimated

10

Fig. 10 Examples for Perseids meteorite detection in noisy
images

Fig. 11 Examples for horizon detection

lines in red. We test HT-CLMS on this image and com-
pare the results with those published by Xu et al. [37]
using their statistical line segment method (SLS) for line
detection. Notice that some ground truth lines are not
detected, typically due to of weak edges. Also, some de-
tected lines are not marked as ground truth (only hor-
izontal and vertical lines are marked). To evaluate ac-
curacy, we therefore compare only lines that are both
labeled as ground truth and which are detected by both
HT-CLMS and SLS.

For each labeled line segment, we recover its normal
line parameters, (ρ, θ), and compare them to the line pa-
rameters estimated by HT-CLMS and SLS. The results
are given in Table 3. Our HT-CLMS method performs
much better than SLS with average θ error of 0.11 com-
pared with 0.35 of SLS and average ρ error of 0.99 com-
pared with 2.92 of SLS.

Fig. 12 Examples for lane detection in low light conditions

Fig. 13 Sample from the thin obstacles dataset [3]

4.4 Runtime evaluation of the CLMS

Our line detection algorithm is based on a fast computa-
tion of LMS using the CLMS method. Our implementa-
tion of the CLMS method, described in Alg. 2, is publicly
available online2. We have compared it with the state of
the art, topological sweep algorithm of Eddelsbrunner
and Souviene [7]. A software implementation of a vari-
ant of this algorithm is given by Rafalin [27]. In our com-
parison, both algorithms where provided with the same
random point set of sizes 128, 256, and 512 points. The
correctness of our algorithm is quantitatively verified by
comparing its output for each point set with the output
of the topological sweep method.

Our results are reported in Table 4 and Fig 17. Ev-
idently, in all cases the speedup factor of our proposed

2 Available: https://github.com/ligaripash/
CudaLMS2D.git

11

Table 3 Comparison of HT-CLMS line detection method for the image in 16 versus the marked ground truth and the line
segment computed by the SLS method by Xu at al. (2015) [37]

Index
Labelled Line SLS Our HT-CLMS

End Point End Point θ ρ θ ρ θ Error ρ Error θ ρ θ Error ρ Error

1 (110, 399) (111, 477) 179.27 -104.88 0.00 109.00 0.73 4.12 179.27 -103.89 0.00 0.99
2 (636, 418) (363, 476) 78.04 543.13 78.12 542.74 0.12 1.69 78.02 541.35 0.02 0.30
3 (586, 141) (336, 180) 81.55 228.71 81.32 229.74 0.06 2.04 81.51 225.93 0.13 1.50
4 (587, 183) (337, 205) 84.97 233.75 84.85 235.79 0.12 2.04 84.87 232.60 0.10 1.15
5 (584, 235) (351, 238) 89.54 242.70 89.50 242.05 0.24 0.45 89.30 242.10 0.04 0.40
6 (135, 255) (3, 255) 90.00 255.00 90.43 254.99 0.43 0.01 90.00 253.00 0.00 2.00
7 (159, 218) (0, 215) 91.10 216.88 91.38 216.96 0.30 2.00 90.99 214.24 0.09 0.72
8 (170, 184) (5, 177) 92.39 179.68 92.68 178.80 0.25 2.17 92.89 175.80 0.46 0.83
9 (388, 125) (10, 84) 96.21 85.06 96.02 84.69 0.17 2.26 96.14 82.12 0.05 0.31
10 (583, 329) (340, 298) 97.38 254.22 97.01 256.03 0.26 3.45 97.44 250.72 0.17 1.86
11 (585, 372) (337, 326) 100.51 259.07 100.40 261.03 0.11 1.96 100.41 258.59 0.58 3.43
12 (411, 366) (411, 465) 179.48 -409.66 179.53 -406.41 0.47 3.59 179.42 -406.57 0.58 3.43
13 (343, 398) (343, 477) 179.25 -338.71 179.39 -337.89 0.61 5.11 180.00 -343.00 0.75 4.29
14 (337, 401) (337, 479) 0.00 337.00 179.36 -330.60 0.64 6.40 0.00 336.00 0.00 1.00
15 (419, 366) (419, 463) 179.40 -416.15 179.53 -415.03 0.47 3.97 0.00 419.00 0.60 2.85
16 (98, 400) (98, 479) 0.00 98.00 179.45 -92.40 0.55 5.60 0.00 97.00 0.00 1.00

Table 4 Performance comparison between the sequential topological sweep algorithm of [7] implemented by [27] (Top Sweep),
and our own CLMS implementation.

Input Point
Set Size

Top Sweep
Time [ms]

Top Sweep
FPS

CLSM
Time [ms]

CLMS
FPS

Speedup
Factor

128 42.52 23.51 0.98 1020.41 46.44
256 172.12 5.8 4.22 236.97 40.48
512 691.35 1.44 35.30 28.32 19.57

Fig. 14 Cumulative Error Distribution of θerr for HT-CLMS
and KHT for the thin obstacles dataset [3]

method was substantial. Note how the speedup factor
decrease as input point set size increase. This occurs be-
cause the Top Sweep algorithm has an asymptotically
lower complexity (see Sec. 19). These results suggest ro-
bust estimation is completely feasible in real time, image
processing applications.

Fig. 15 Ground truth labeling error. The blue GT is shifted
one pixel in the ρ direction relative to the true edge. HT-
CLMS compute accurate estimate

5 Conclusions and future work

Despite the ubiquitous use of line detection methods in
image processing and computer vision systems, and the
many years since these methods were first introduced,
very little has changed in how lines are detected or the
runtime of line detection implementations. In this paper
we propose a method which is both more robust (higher

12

Fig. 16 Sample image from the York Urban Line Segment
Database. HT-CLMS lines are marked in red. Ground truth
line segment are marked in blue.

0

100

200

300

400

500

600

700

800

128 256 512

T
im

e
[m

s]

Point Set Size

CLMS - GPU

Top Sweep CPU single

thread

Top Sweep CPU - 2 threads

estimated*

Top Sweep CPU - 4 threads

estimated*

Top Sweep CPU - 8 threads

estimated*

Fig. 17 Run-time comparison between Top Sweep [27] —
the state-of-the-art LMS, sequential algorithm, — running
on a CPU and our parallel algorithm, CLMS, running on a
GPU. Dashed lines represent theoretical, best case, estimates
of computation time for the Top Sweep, if it were parallelized
to the use of two, four, or eight threads. Importantly, as far
as we know, Top Sweep has not been parallelized and cannot
be executed by more than a single thread.

breaking point) and faster than than existing methods.
Key to our approach is the observation that the GPU
processors — now standard fixtures in many computer
systems — are well suited for efficient LMS computation.

Based on this observation, we propose a line detec-
tion algorithm designed using SHT and LMS. We show
that our algorithm is very robust to noise. Using CUDA,
we describe an LMS implementation that is ×20 to 40
faster than a single threaded CPU implementation of
the fastest LMS algorithm described in the literature.
We tested HT-CLMS extensively and compared its re-
sults with a variety of existing line detection algorithms.
Our results demonstrate that accurate and highly robust
line detection are both feasible even for real-time applica-
tions. Importantly, the properties of LMS have been well
known for some time and GPU hardware is widespread

in standard computer vision and image processing sys-
tems. Still, we are unaware of previous reports demon-
strating the use of GPUs for accelerated line detection
using accurate LMS methods.

Future work. A natural extension of this work is the
detection of 3D lines in a 3D point cloud. The concept of
point-line duality used as a the foundation for our CLMS
algorithm can be easily extended to point-plane duality
in 3D space. This extension can have important appli-
cations in computer graphics systems, where 3D point
cloud data are commonplace.

Another interesting direction for future work is the
application of the idea of fast searching in the line ar-
rangement of the dual space to solve the maximal margin
clustering problem: At the core of our CLMS algorithm
we conduct a parallel search for the minimal bracelet in
the dual plane - a minimum length slab that intersects
n/2 lines. If we search for a minimal slab that intersects
no lines at all we find a solution to the maximal mar-
gin clustering problem which plays a significant role in
unsupervised learning and has high computational com-
plexity. This problem can thus benefit from a parallel
acceleration approach similar to the one proposed here.

Finally, our accelerated CLMS algorithm can be also
be used as a building block for other applications where
fast robust regression is needed. We plan to explore such
applications in future work.

References

1. Mohammed Atiquzzaman and Mohammed W
Akhtar. Complete line segment description using
the hough transform. Image and Vision computing,
12(5):267–273, 1994.

2. Kenneth E Batcher. Sorting networks and their ap-
plications. In Proceedings of the April 30–May 2,
1968, spring joint computer conference, pages 307–
314. ACM, 1968.

3. Joshua Candamo, Rangachar Kasturi, Dmitry Gold-
gof, and Sudeep Sarkar. Detection of thin lines using
low-quality video from low-altitude aircraft in urban
settings. IEEE Transactions on aerospace and elec-
tronic systems, 45(3), 2009.

4. Richard Cole, Jeffrey S Salowe, William L. Steiger,
and Endre Szemerédi. An optimal-time algorithm
for slope selection. SIAM Journal on Computing,
18(4):792–810, 1989.

5. Michael B Dillencourt, David M Mount, and
Nathan S Netanyahu. A randomized algorithm for
slope selection. International Journal of Computa-
tional Geometry & Applications, 2(01):1–27, 1992.

6. Richard O Duda and Peter E Hart. Use of the hough
transformation to detect lines and curves in pictures.
Communications of the ACM, 15(1):11–15, 1972.

13

7. Herbert Edelsbrunner and Diane L Souvaine. Com-
puting least median of squares regression lines and
guided topological sweep. Journal of the American
Statistical Association, 85(409):115–119, 1990.

8. Jeff Erickson, Sariel Har-Peled, and David M Mount.
On the least median square problem. Discrete &
Computational Geometry, 36(4):593–607, 2006.

9. Leandro AF Fernandes and Manuel M Oliveira. Kht
sansbox. https://sourceforge.net/projects/
khtsandbox, 2008.

10. Leandro AF Fernandes and Manuel M Oliveira.
Real-time line detection through an improved hough
transform voting scheme. Pattern Recognition,
41(1):299–314, 2008.

11. Yasutaka Furukawa and Yoshihisa Shinagawa. Accu-
rate and robust line segment extraction by analyzing
distribution around peaks in hough space. Computer
Vision and Image Understanding, 92(1):1–25, 2003.

12. C Galambos, J Kittler, and J Matas. Gradient based
progressive probabilistic hough transform. Proc. Vi-
sion, Image and Signal Processing, 148(3):158–165,
2001.

13. B Gatos, SJ Perantonis, and N Papamarkos. Ac-
celerated hough transform using rectangular image
decomposition. Electronics Letters, 32(8):730–732,
1996.

14. Juan Gómez-Luna, José Maŕıa González-Linares,
Jose Ignacio Benavides, Emilio L Zapata, and Nico-
las Guil. Parallelization of the generalized hough
transform on gpu. 2011.

15. Jungang Guan, Fengwei An, Xiangyu Zhang, Lei
Chen, and Hans Jürgen Mattausch. Real-time
straight-line detection for xga-size videos by hough
transform with parallelized voting procedures. Sen-
sors, 17(2):270, 2017.

16. Itseez. Open source computer vision library. https:
//github.com/itseez/opencv, 2015.

17. Junhong Ji, Guodong Chen, and Lining Sun. A novel
hough transform method for line detection by en-
hancing accumulator array. Pattern Recognition Let-
ters, 32(11):1503–1510, 2011.

18. Radovan Jošth, Markéta Dubská, Adam Herout, and
Jǐŕı Havel. Real-time line detection using acceler-
ated high-resolution hough transform. In Scandina-
vian Conference on Image Analysis, pages 784–793.
Springer, 2011.

19. Nahum Kiryati, Yuval Eldar, and Alfred M Bruck-
stein. A probabilistic hough transform. Pattern
recognition, 24(4):303–316, 1991.

20. Reinhard Klette. image sequence analysis test site.
http://www.mi.auckland.ac.nz/EISATS/, 2013.

21. Reinhard Klette. image sequence analysis test site.
http://www.elderlab.yorku.ca/YorkUrbanDB/,
2015.

22. Xiaofeng Lu, Li Song, Sumin Shen, Kang He, Songyu
Yu, and Nam Ling. Parallel hough transform-based
straight line detection and its fpga implementation

in embedded vision. Sensors, 13(7):9223–9247, 2013.
23. Priyanka Mukhopadhyay and Bidyut B Chaudhuri.

A survey of hough transform. Pattern Recognition,
2014.

24. Priyanka Mukhopadhyay and Bidyut B Chaudhuri.
A survey of hough transform. Pattern Recognition,
48(3):993–1010, 2015.

25. J Oberst, Joachim Flohrer, S Elgner, T Maue,
A Margonis, R Schrödter, Wilfried Tost, M Buhl,
J Ehrich, A Christou, et al. The smart panoramic op-
tical sensor head (sposh)a camera for observations of
transient luminous events on planetary night sides.
Planetary and Space Science, 59(1):1–9, 2011.

26. Hagen Peters, Ole Schulz-Hildebrandt, and Norbert
Luttenberger. Fast in-place sorting with cuda based
on bitonic sort. In Parallel Processing and Applied
Mathematics, pages 403–410. Springer, 2010.

27. Eynat Rafalin, Diane Souvaine, and Ileana Streinu.
Topological sweep in degenerate cases. In Algo-
rithm Engineering and Experiments, pages 155–165.
Springer, 2002.

28. R.M. Ramachandran, V. Karpand, and R.M. Karp.
A survey of parallel algorithms for shared-memory
machines, 1988.

29. Peter J Rousseeuw. Least median of squares regres-
sion. Journal of the American statistical association,
79(388):871–880, 1984.

30. Jason Sanders and Edward Kandrot. CUDA by ex-
ample: an introduction to general-purpose GPU pro-
gramming. Addison-Wesley Professional, 2010.

31. Pui-Kin Ser and Wan-Chi Siu. A new generalized
hough transform for the detection of irregular ob-
jects. Journal of Visual Communication and Image
Representation, 6(3):256–264, 1995.

32. Diane L Souvaine and J Michael Steele. Time-and
space-efficient algorithms for least median of squares
regression. Journal of the American Statistical As-
sociation, 82(399):794–801, 1987.

33. JM Steele and WL Steiger. Algorithms and complex-
ity for least median of squares regression. Discrete
Applied Mathematics, 14(1):93–100, 1986.

34. Arnold J Stromberg. Computing the exact least me-
dian of squares estimate and stability diagnostics in
multiple linear regression. SIAM Journal on Scien-
tific Computing, 14(6):1289–1299, 1993.

35. Chunling Tu. Enhanced Hough transforms for image
processing. PhD thesis, Université Paris-Est, 2014.

36. Gert-Jan van den Braak, Cedric Nugteren, Bart
Mesman, and Henk Corporaal. Fast hough trans-
form on gpus: Exploration of algorithm trade-offs. In
International Conference on Advanced Concepts for
Intelligent Vision Systems, pages 611–622. Springer,
2011.

37. Zezhong Xu, Bok-Suk Shin, and Reinhard Klette. A
statistical method for line segment detection. Com-
puter Vision and Image Understanding, 138:61–73,
2015.

