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Abstract We present a novel method for modeling 3D
face shape, viewpoint, and expression from a single, un-
constrained photo. Our method uses three deep convolu-
tional neural networks (CNN) to estimate each of these com-
ponents separately. Importantly, unlike others, our method
does not use facial landmark detection at test time; instead,
it estimates these properties directly from image intensities.
In fact, rather than using detectors, we show how accurate
landmarks can be obtained as a by-product of our modeling
process. We rigorously test our proposed method. To this
end, we raise a number of concerns with existing practices
used in evaluating face landmark detection methods. In re-
sponse to these concerns, we propose novel paradigms for
testing the effectiveness of rigid and non-rigid face align-
ment methods without relying on landmark detection bench-
marks. We evaluate rigid face alignment by measuring its
effects on face recognition accuracy on the challenging IJB-
A and IJB-B benchmarks. Non-rigid, expression estimation
is tested on the CK+ and EmotiW’17 benchmarks for emo-
tion classification. We do, however, report the accuracy of
our approach as a landmark detector for 3D landmarks on
AFLW2000-3D and 2D landmarks on 300W and AFLW-
PIFA. A surprising conclusion of these results is that better
landmark detection accuracy does not necessarily translate
to better face processing. Parts of this paper were previously
published by Tran et al (2017); Chang et al (2017, 2018).
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Fig. 1 Results of our FAME approach. We propose deep networks
which regress 3DMM shape, expression, and viewpoint parameters
directly from image intensities. We show this approach to be highly
robust to appearance variations, including out-of-plane head rotations
(top row), scale changes (middle), and ages (bottom).

Keywords 3D face modeling · Face alignment · Facial
expression estimation · Facial landmark detection

1 Introduction

Successful methods for single-view 3D face shape modeling
were proposed nearly two decades ago (Blanz et al, 2002;
Blanz and Vetter, 2003; Paysan et al, 2009; Romdhani and
Vetter, 2003). These methods, and the many that followed,
often claimed high fidelity reconstructions and offered pa-
rameterizations for facial expressions besides the underlying
3D facial shape.

Despite their impressive results, they and others since
have suffered from problems when processing images taken
under unconstrained viewing conditions (Blanz et al, 2002;
Blanz and Vetter, 2003; Chu et al, 2014; Paysan et al, 2009;
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Romdhani and Vetter, 2003; Tang et al, 2008; Yang et al,
2011). Many of these methods relied, to some extent, on fa-
cial landmark detection performed either prior to reconstruc-
tion or concurrently, as part of the reconstruction process.
By using landmark detectors, these methods were sensitive
to face pose and, aside from a few recent exceptions (e.g.,
3DDFA (Zhu et al, 2016b)), could not operate well on faces
viewed in extreme out-of-plane rotations (e.g., near-profile).
Scale changes and occlusions were also problems: either be-
cause landmarks were too small to be accurately localized or
were altogether invisible due to occlusions, detection and 3D
reconstruction were not handled well. Finally, many meth-
ods applied iterative analysis-by-synthesis steps (Bas et al,
2016; Huber et al, 2016; Romdhani and Vetter, 2005). This
approach was not only computationally expensive, but also
hard to distribute and run in parallel on dedicated hardware
offered by graphical processing units (GPU).

We offer a novel, efficient, and accurate alternative to
these methods by describing a deep learning–based ap-
proach for face alignment, modeling, and expression esti-
mation (FAME). We show how deep networks can sepa-
rately estimate each of the following components of a 3D
morphable face model (3DMM) representation (Sec. 3): 3D
face shape, six degrees of freedom (6DoF) viewpoint, and
3D face expression (Fig 1). We see access to sufficient la-
beled training data as a key concern in such an approach and
explain how we mitigate this problem and obtain massive,
labeled data sets for the supervised training of our networks.

Contrary to others, our approach does not require facial
landmark detection at test time and instead models faces
directly from image intensities. Still, if facial landmarks
are required, we show how they can be estimated as a by-
product of our modeling, rather than as part of our modeling
process (Sec. 4).

Before testing our method, we discuss the shortcomings
of facial landmark detection benchmarks (Sec. 5). In par-
ticular, we claim that manual landmark annotations used as
ground truth by such benchmarks can be arbitrary and inac-
curate. Thus, better detection accuracy may actually reflect
better estimation of uncertain human labels rather than, say,
better face alignment (Fig. 2). A similar observation was re-
cently made by others Dong et al (2018b) and is reflected in
the design of the PIFA protocol Jourabloo and Liu (2015).

To address these concerns, we propose a simple, alter-
native test paradigm which considers the bottom line per-
formances of the systems employing these methods. Thus,
because one of the most popular applications of facial
landmark detectors is face alignment in face recognition
pipelines (Chang et al, 2017; Masi et al, 2018b), we evaluate
different methods by measuring their effect on face recogni-
tion accuracy. To this end, we use the challenging, uncon-
strained images of the IJB-A (Klare et al, 2015) and IJB-
B (Whitelam et al, 2017) benchmarks (Sec. 6.1). Both sets

Fig. 2 The problem with manually labeled facial landmarks. Images
and annotations from the AFW (Zhu and Ramanan, 2012) (left two
columns) and iBug (Sagonas et al, 2013) benchmarks. One of each pair
shows manually annotated landmarks; the other, a high-error predic-
tion of our FacePoseNet (Sec. 3.3) Which one is which?1. Rather than
measuring the accuracy of predicting human annotated landmarks, we
propose evaluating the effect of different face alignment methods on
the bottom line performance of the face processing systems.

contain images with viewing conditions which are typically
far more challenging than those in landmark benchmarks.

To further compare accuracy of non-rigid face deforma-
tion estimations, we propose tests on facial emotion classifi-
cation benchmarks (Sec. 6.2). For this purpose, we use both
the controlled images in the Extended Cohn-Kanade (CK+)
benchmark (Lucey et al, 2010) and the unconstrained im-
ages in the EmotiW-17 benchmark (Dhall et al, 2017). We
use both benchmarks to test how different expression esti-
mates, obtained by different methods, affect the quality of
descriptors used for emotion classification.

Finally, we evaluate the facial landmarks obtained by our
method and others on the popular 300W benchmark (Sag-
onas et al, 2013) and AFLW-PIFA dataset (Jourabloo and
Liu, 2015) for 2D landmark detection and the AFLW2000-
3D benchmark for 3D landmark detection (Zhu et al, 2016b)
(Sec. 6.3). A surprising conclusion of our tests is that older
facial landmark detectors often outperform newer, presum-
ably state-of-the-art, methods when used in face processing
pipelines. Our approach is not necessarily more accurate as a
landmark detector than state-of-the-art detectors, though its
accuracy is comparable to theirs. Our method is, however,
far faster and more accurate than existing landmark detec-
tors when evaluated for its bottom line performance on face
recognition and emotion classification.

To promote reproduction of our results, our code
and deep models are publicly available from: https://

github.com/fengju514/Expression-Net.

1 Imagesone,three,andfivearegroundtruth.

https://github.com/fengju514/Expression-Net
https://github.com/fengju514/Expression-Net
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2 Related work

2.1 Facial landmark detection

Facial landmark detection is a general problem which has
applications in numerous face-related systems. Landmark
detectors are very often used to align face images by ap-
plying rigid (Eidinger et al, 2014; Everingham et al, 2006;
Wolf et al, 2011) and non-rigid transformations (Hassner,
2013; Jeni et al, 2015; Zhu et al, 2016b) transformations in
2D and 3D (Masi et al, 2014, 2016b, 2017, 2018a). Other fa-
cial landmark applications involve estimating 3D face shape,
expression, emotion, and many others.

To address the problem of varying 3D poses,
3DDFA (Zhu et al, 2016b) learns the parameters of a
3DMM representation using a deep convolutional neu-
ral network (CNN). Unlike us, however, they describe an
iterative, analysis-by-synthesis technique. Tweaked CNN
(TCNN) (Wu et al, 2017) optimize multiple versions of the
final network layers, each specialized to produce landmark
estimates for different face viewpoints, determined in an un-
supervised manner. DCLM (Zadeh et al, 2016), by compar-
ison, introduced an ensemble of convolutional expert net-
works to capture complex landmark appearance variations.

Very recently, Bhagavatula et al (2017) proposed their
3D-STN approach which shares some of our design goals.
In fact, we use a modified version of their regression sampler
component to optimize facial landmark localization. Their
approach, however, learns a 3D, thin plate splines (TPS)
warping matrix and a 11DoF camera projection matrix (11
DoF) to modify and fit a generic 3D face model to the input.
Our approach is very different: we use a 3DMM represen-
tation, estimating facial shape, expression, and 6DoF pose
directly from image intensities with three deep networks.

Kumar et al (2017) proposed the KEPLER system, an
iterative method based on three submodules: a rendering
module that stacks previously predicted key-point locations
in the current image, a CNN that predicts key-point location
updates towards the ground-truth, and a final step which ap-
plies these increments to generate new landmark estimates.
Inspired by cascaded regression, the method iterates over
these three modules in order to get final key-points predic-
tions along with a visibility confidence and 3D head pose
estimation. Unlike KEPLER, our method offers the speed
of a direct regression method and is self-supervised, without
the need for manual landmark annotations for training.

Bulat and Tzimiropoulos (2017b) discuss the impor-
tance of data set size, proposing the largest annotated train-
ing set for landmark detection (LS3D-W), consisting of
∼230,000 samples. They additionally provide ablation stud-
ies of pose, landmark initialization, face resolution, and
more such factors. Bulat and Tzimiropoulos (2017a) stud-
ied how to redesign the bottleneck layer of a CNN in order

to obtain substantial improvements in localization accuracy
while constraining the learned model to be lightweight, fast,
and compact. While most methods are designed to be robust
to typical appearance nuisance factors — pose and illumi-
nation — (Bulat and Tzimiropoulos, 2017b) and Dong et al
(2018a) designed a method to make landmark detection sys-
tems robust to different image styles.

Finally, Kumar and Chellappa (2018) used a pose esti-
mating network similar to our FacePoseNet (Chang et al,
2017) in their facial landmark detection system. Our detec-
tion accuracy on landmark benchmarks may be lower than
theirs. Unlike them, however, our FAME approach provides
a complete 3D face reconstruction, with landmarks only be-
ing a by-product.

2.2 3D face modeling

Estimating the 3D shape of a face appearing in a single
image is a problem with a history now spanning over two
decades. Some proposed example-based approaches (Hass-
ner and Basri, 2006; Vetter and Blanz, 1998; Hassner, 2013)
where the 3D shape was estimated using the shapes of sim-
ilar reference faces. These methods were typically very ro-
bust to viewing conditions, but were not designed to offer
accurate 3D reconstructions. To estimate fine facial details,
others used shape from shading (SfS) for face reconstruc-
tion (Kemelmacher-Shlizerman and Basri, 2011; Li et al,
2014). Though SfS reconstructions were detailed, they were
often limited to rather constrained viewing settings.

Possibly the most popular methods of estimating 3D
facial shapes involved 3DMM. These statistical represen-
tations were introduced by Blanz and Vetter (1999) and
then later improved by others (Blanz et al, 2004; Chu et al,
2014; Paysan et al, 2009; Romdhani and Vetter, 2003;
Tang et al, 2008; Yang et al, 2011). We provide a brief
overview of these representations in Sec. 3.1. Whereas clas-
sical 3DMM fitting methods used an analysis-by-synthesis
approach which involved computationally expensive render-
ing cycles, we estimate 3DMM parameters directly from im-
age intensities with deep networks.

Facial landmarks were also used to produce 3D face
shape estimates (Jourabloo and Liu, 2016; Zhu et al, 2016b).
Because these methods often focused on landmark detection
accuracy, they were typically very fast, but not necessarily
accurate in the quality of their reconstructions.

Finally, deep learning methods were also recently pro-
posed for 3D face shape estimation (Booth et al, 2017; Dou
et al, 2017; Jackson et al, 2017; Sela et al, 2017; Richardson
et al, 2016, 2017; Sengupta et al, 2018; Tewari et al, 2018;
Tran et al, 2017, 2018). Our work extends the method pro-
posed by Tran et al (2017) by adding deep 6DoF pose and
29D facial expression estimation to their accurate 3D faces.
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2.3 Face alignment and pose (viewpoint) estimation

The term face alignment is often used in papers presenting
facial landmark detection methods (Asthana et al, 2014; Cao
et al, 2014; Ren et al, 2014), implying that the two terms
are used interchangeability. This reflects an interpretation of
alignment as forming correspondences between particular
spatial locations in two face images. A different interpre-
tation of alignment, and the one used here, refers not only
to establishing these correspondences but also to warping
the two face images in order to bring them into alignment,
thereby making them easier to compare and match. Such
methods using 2D or 3D transformations are well known to
have a profound impact on the accuracy of face recognition
systems (Hassner et al, 2015, 2016; Huang et al, 2007).

We describe a deep network trained to estimate the 6DoF
of 3D faces viewed in single images. Deep learning is in-
creasingly used for similar purposes, though typically fo-
cusing on general object classes (Bansal et al, 2016; Poirson
et al, 2016; Su et al, 2015). Some recently addressed faces in
particular, though their methods are designed to estimate 2D
landmarks along with 3D face shapes (Jourabloo and Liu,
2016; Kumar et al, 2017; Kumar and Chellappa, 2018; Zhu
et al, 2016b). Unlike our proposed pose estimation, many of
these regress poses by using iterative methods which involve
computationally costly face rendering. We regress 6DoF di-
rectly from image intensities without such rendering steps.

In all these previous efforts, absence of training data was
cited as a major obstacle for training effective deep models
for alignment. In response, some turned to larger 3D object
data sets (Xiang et al, 2014, 2016) or using synthetically
generated examples (Richardson et al, 2017). We propose
a far simpler alternative and show it to result in robust and
accurate face alignment.

2.4 Facial expression estimation

We first emphasize the distinction between the related, yet
different tasks of emotion classification and expression re-
gression. The former seeks to classify images or videos into
discrete sets of facial emotion classes (Dhall et al, 2015;
Lucey et al, 2010) or action units (Fabian Benitez-Quiroz
et al, 2016; Zafeiriou et al, 2016). In the past, this prob-
lem was addressed by considering the precise locations of
facial landmarks. In recent years, however, a growing num-
ber of state-of-the-art methods have instead adopted deep
networks, applying them directly to image intensities rather
than estimating landmark positions as a proxy step (Kosti
et al, 2017; Levi and Hassner, 2015; Zhang et al, 2016).

The latter task, expression regression, concerns estima-
tion of the non-rigid facial deformations produced by fa-
cial expressions. These expressions are often expressed as
active appearance models (AAM) (Lucey et al, 2010) and

Fig. 3 Proposed framework for 3D face modeling. Given an input
face photo, we process it using three separate deep networks. These
networks independently estimate, from top to bottom: the 3D face
shape (Tran et al, 2017), 6DoF viewpoint, and 29D expression coef-
ficients (last two described here). The output is an accurate 3D face
model, aligned with the input face.

Blendshape model coefficients (Richardson et al, 2017; Zhu
et al, 2016b, 2015b). In this work we focus on estimating
3D expression coefficients, using the same 29D representa-
tion of the 3D facial deformation described by 3DDFA (Zhu
et al, 2016b). 3DDFA, however, obtains these expression pa-
rameters using an iterative analysis-by-synthesis approach,
whereas we estimate these parameters directly using a sin-
gle forward pass through a dedicated deep network.

3 Our proposed FAME framework

We describe a deep, landmark-free 3D face modeling
method. Our approach, illustrated in Fig. 3, is designed to
provide an alternative means of obtaining the same goals
previously attained with the help of facial landmark detec-
tors. Namely, it allows for face alignment in 3D and 2D, ex-
pression modeling (deformations) in 3D, and 3D face shape
estimation. Our method uses three deep networks which sep-
arately estimate subject-specific 3D face shape, viewpoint,
and 3D expression deformations directly from the input im-
age. As we later show, rather than using landmark detectors
in this process, accurate facial landmarks can actually be ob-
tained as a by-product of our FAME approach.

We emphasize that although we use landmark detection
methods during training, our test time system is completely
landmark free. We use landmark detectors as a cheap yet ef-
fective alternative to the manual labor required by others for
labeling training images. The term “landmark-free” there-
fore refers to the absence of landmark detection at test time.

3.1 Preliminaries

We model a 3D face shape F∈R3n using the following stan-
dard, linear 3DMM representation (for now, ignoring pa-
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rameters representing facial texture and 6DoF pose):

F = ŝ+
s

∑
i=1

αiSi +
m

∑
j=1

η jE j, (1)

where ŝ ∈ R3n represents the average 3D face shape. The
first summation expresses shape variation as a linear com-
bination of shape principal components S ∈ R3n×s with the
coefficient vector α ∈ Rs. Here, Si indicates the direction to
deform the face, following the variation in the data learned
by principle component analysis (PCA). This deformation
is regulated by the corresponding scalar αi. 3D expression
deformation is represented as a linear combination of ex-
pression components E ∈ R3n×m with the coefficient vector
η ∈ Rm. Here, 3n represents the 3D coordinates for the n
vertices of the 3D face shape. The numbers of components
for shape, s, and expression, m, define the dimensionality of
the 3DMM coefficients.

Our representation uses the Basel Face Model (BFM)
3DMM shape components (Paysan et al, 2009), where s =
99 and the expression components defined by 3DDFA (Zhu
et al, 2016b), with m = 29. The vectors α and η control the
intensity of deformations provided by the principal compo-
nents. Given estimates for α and η , it is thus possible to
reconstruct the 3D shape of the face appearing in the input
image by Eq. (1).

3.2 Modeling subject-specific 3D shape

Given image I, we estimate α with the recent deep 3DMM
approach of Tran et al (2017), using their publicly avail-
able code and pre-trained model. They regress 3DMM co-
efficients, α , directly from image intensities using a ResNet
architecture with 101 layers (He et al, 2016) which we refer
to here as FaceShapeNet.

The decision to use this method to estimate a subject-
specific 3D face shape is not matter of fact. This method
was extensively tested, and the results reported in (Tran et al,
2017) demonstrate it to be both invariant and discriminative
under the harshest viewing conditions, previously consid-
ered only by face recognition systems. In particular, it has
been shown to work well and produce invariant 3D shapes
even on photos where the face is heavily occluded. In fact,
it is this property which led to its use for occluded 3D face
reconstruction by Tran et al (2018).

We note that FaceShapeNet was designed to infer only
the 3D face shape, without estimating its viewpoint or ex-
pression (Tran et al, 2017); i.e., the 3D face shape is pro-
duced in fixed 3D coordinates and is not modified to ac-
count for different viewpoints and expressions. Estimating
these missing components—viewpoint and expression—is
described next.

3.3 Modeling 6DoF face viewpoint

We propose to infer a global, 6DoF 3D face viewpoint di-
rectly from image intensities using a deep neural network.
For a given face photo, our FacePoseNet (FPN) regresses
6DoF viewpoint parameters. We next describe FPN and the
novel method used to produce sufficient training data, along
with the pose labels required to train it.

Viewpoint representation. We define the viewpoint, h, as
the 6DoF transformation components of the extrinsic cam-
era matrix involved in projecting a 3D face head onto the
face in the photo. These components are the three rotation
angles, r = (rx,ry,rz)

T , represented as Euler angles (pitch,
yaw, and roll), and translation vector, t = (tx, ty, tz)T . Thus:

h = (rx,ry,rz, tx, ty, tz)T . (2)

Given m 2D facial landmark coordinates on an input image,
pm×2, and their corresponding, reference 3D coordinates,
Pm×3—selected on a fixed, generic 3D face model—we can
obtain a 3D to 2D projection of the 3D landmarks onto the
2D image by solving the following equation for the standard
pinhole model:

[p,1]T = A[R, t][P,1]T .
= Π [P,1]T , (3)

where Π is defined as the camera projection matrix, with
A, the intrinsic camera matrix, R and t the 3D rotation ma-
trix and translation vector, and 1 a constant vector of 1. The
intrinsic camera parameters in A are kept fixed with the fo-
cal length set to 2,880 pixels and the principal point set to
(112,112). We extract a rotation vector r = (rx,ry,rz)

T from
R using the Rodrigues rotation formula:

R = cosθI+(1− cosθ)rrT + sinθ

 0 −rz ry
rz 0 −rx
−ry rx 0

 , (4)

where we define θ = ||r||2. A similar process is used in
many face processing pipelines to align faces (see, e.g., Masi
et al (2014, 2016b, 2017, 2018a) and many others).

Obtaining sufficient viewpoint training examples. Train-
ing a deep network typically requires large quantities of la-
beled training data. Here, this implies large numbers of face
photos, each associated with a ground truth 6DoF pose la-
bel. Ostensibly, existing data sets annotated for facial land-
marks can be used to provide these viewpoint annotations
by using their landmark annotations to estimate viewpoint
for each image. We found, however, that the number of im-
ages in standard data sets is too small for this purpose. A key
problem is therefore obtaining a large enough training set.

To produce our training labels, we turn to the facial
landmark detection methods we ultimately seek to replace.
Specifically, we propose to synthesize 6D, ground truth



6 Feng-Ju Chang et al.

Fig. 4 Augmenting appearances of images from the VGG Face dataset (Parkhi et al, 2015). After detecting the face bounding box (bbox)
and landmarks, we augment facial appearances by applying a number of simple planar transformations—including translation, scaling, rotation,
and flipping. The same transformations are applied to the landmarks; this is followed by 6DoF viewpoint parameters being extracted from the
transformed landmarks. Note that these images are often too challenging for existing landmark detectors to directly process (see Fig. 5).

pose labels by running the existing facial landmark detec-
tor of Baltrušaitis et al (2016) on a large image set. For this
purpose, we use the 2.6 million images in the VGG Face
dataset (Parkhi et al, 2015). The detected landmarks are then
used to compute the 6DoF labels for the images in this set,
as described above.

Viewpoint training set augmentation. In practical use-
cases, pose estimation is performed on face bounding boxes
obtained from a face detector. Bounding boxes returned by
such detectors can vary in how tightly they are positioned
over the face: bounding boxes can either be tightly placed
over the face region or loosely placed over the entire head.
These variations translate to scale changes when the face is
ultimately processed by the alignment method. In order to
train our network to be robust to these variations, as well as
potential variations in face location or rotation, we augment
the training set used for training.

Specifically, we apply a number of face augmentation
techniques to the images in the VGG Face set, substantially
enriching the appearance variations it provides. Fig. 4 illus-
trates this augmentation process. Following face detection
using the method of Yang and Nevatia (2016) and landmark
detection (Baltrušaitis et al, 2016), we transform detected
bounding boxes and their detected facial landmarks using a
number of simple in-plane transformations. The parameters
for these transformations are selected randomly from fixed
distributions (provided in Table. 1). The transformed faces
are then used for training, along with their horizontally mir-
rored versions. The same transformations are applied to the
landmarks used to produce the 6DoF training labels. Thus,
our 6DoF training labels match the augmented faces.

Some example augmented faces are provided in Fig. 5.
Importantly, the augmented face images used for training are
often too challenging for existing landmark detectors, due to
extreme rotations or scaling. This, of course, does not affect
the accuracy of the ground truth labels which were obtained
from the original images. It does, however, force our CNN
to learn to estimate poses even on such challenging images.

A simple FPN architecture. We experimented with
two network architectures for our FPN. The first, orig-

inally presented in Chang et al (2017), is a simple
AlexNet (Krizhevsky et al, 2012), initialized using weights
provided by Masi et al (2016a). We modify this network
by defining a new output layer, FC8, which uses `2-loss to
regress a 6D floating point output—representing the 6DoF
viewpoint—rather than predict one-hot encoded, multi-class
label. We initialize this new layer with parameters drawn
from a Gaussian distribution with zero mean and standard
deviation 0.01. All biases are initialized with zero. During
training, batch size is set to 60, and the initial learning rate
is set to 0.01. Learning rate is decreased by an order of mag-
nitude every 5,000 iterations until the validation accuracy
for the fine-tuned network saturates.

Note that during training, each dimension of the head
pose labels is normalized by the corresponding mean and
standard deviation of the training set, compensating for the
large value differences among dimensions. The same nor-
malization parameters are used at test time.

Improved FPN architecture. In addition to the shallow
architecture described above, we tested a deeper network:
a ResNet architecture with 101 layers (He et al, 2016)
(ResNet101). This deeper network was trained on a larger
training set — the 300W-LP dataset (Zhu et al, 2016b)
— which offers richer appearance variations including, in
particular, a larger proportion of profile views (Masi et al,
2018a). In this improved version, instead of using the pin-
hole model detailed in Eq. (3), the weak perspective projec-

Table 1 Summary of augmentation transformation parameters used to
produce FPN training data: U (a,b) samples from a uniform distribu-
tion ranging from a to b and N (µ,σ2) samples from a normal distri-
bution with mean µ and variance σ2. The values width and height are
the face detection bounding box dimensions.

Transformation Range

Horizontal translation U (−0.1,0.1)×width
Vertical translation U (−0.1,0.1)×height
Scaling U (0.75,1.25)
Rotation (degrees) 30×N (0,1)
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Fig. 5 (a) Example augmented training images. Example images from the VGG Face data set (Parkhi et al, 2015) following data augmentation.
Each triplet shows the original detected bounding box (left) and its augmented versions (mirrored across the horizontal axis). Both flipped versions
were used for training FPN. Note that in some cases, detecting landmarks would be highly challenging on the augmented face, due to severe
rotations and scalings not normally handled by existing methods. Our FPN is trained with the original landmark positions, transformed to the
augmented image coordinate frame (Fig. 4).

tion is regressed for the 300W-LP dataset. All other settings
were similar to the ones used for the AlexNet version.

2D and 3D face alignment with FPN. Given a test image,
we first apply the same face detector used in training (Yang
and Nevatia, 2016), then crop the face and scale it to the
dimension of the network’s input layer. The 6D network
output is then converted to a projection matrix. Specifically,
the projection matrix is produced by the (constant) camera
matrix A, rotation matrix R, and the translation vector t in
Eq. (3). With this projection matrix we can render new views
of the face, aligning it across 3D views as was recently pro-
posed by others (Masi et al, 2016b, 2017).1

3.4 Modeling facial expressions

Deformations of the 3D face shape due to changing facial
expressions are estimated separately from the underlying
subject-specific 3D shape and the viewpoint. As in the pre-
vious two sections, we again use a deep network for this pur-
pose, our FaceExpNet (FEN), applying it directly to image
intensities. As with the other two networks, availability of
labeled training data is a primary concern. For our purposes,
training labels are 29D real-valued vectors of expression co-
efficients (Sec. 3.1). These labels do not have natural inter-
pretations that may easily be used by human operators to
manually collect data. To obtain our required training data,
we follow a process similar to the one used for training our
FPN to estimate viewpoint in Sec. 3.3.

Obtaining sufficient expression training examples. To our
knowledge, there is no publicly available data set containing
a sufficient number of face images, labeled with expression
coefficients. Presumably, here again, one way of mitigat-
ing this problem is to use face landmark detection bench-
marks. That is, taking the face images in existing landmark

1 FPN, bundled with rendering and alignment code, publicly avail-
able from: https://github.com/fengju514/Face-Pose-Net.

detection benchmarks and computing their expression coef-
ficients using their ground truth landmark annotations. As in
Sec. 3.3, however, the number of examples we would gain
would be far too small. The popular 300W data set, for ex-
ample, offers 3,026 images in its combined training and test-
ing splits, and this is likely too few to train a deep CNN to
regress 29D real valued output vectors.

To obtain training data, we again generate training labels
by using existing methods to estimate labels for a large col-
lection of face images. We begin by estimating 99D 3DMM
coefficients for the 0.5 million face images in the CASIA
WebFace collection (Yi et al, 2014) using the FaceShapeNet
of Tran et al (2017) (see also Sec. 3.2). For every CASIA
image, we thus obtain the 3D face shape using the first two
terms of Eq. (1).

We assume that all images belonging to the same sub-
ject should have the same, single 3D shape. We therefore
apply the same shape coefficients pooling method of Tran
et al (2017) to average the 3DMM estimates for all images
belonging to the same subject, thereby obtaining a single
3DMM estimate per subject. Viewpoint was then estimated
using our FPN (Sec. 3.3). From this 6DoF pose estimate, we
extract a projection matrix Π (Eq. (3)) using standard tech-
niques (Hartley and Zisserman, 2003).

Given a projection matrix Π that maps from the recov-
ered 3D shape (determined by F′ and ηE) to the 2D points
of an input image, we can solve the following optimization
problem to get expression coefficients:

η
? = argmin

η
||p−Π

(
F′+ηE

)
||2,

subject to |η j| ≤ 3 δE j,
(5)

where δE j is the deviation of the j-th principal compo-
nents of the 3DMM expression; p is a set of landmarks de-
tected by standard facial landmark detection methods, here,
CLNF (Baltrusaitis et al, 2013). The optimization itself is
performed by standard Gauss-Newton optimization. This

https://github.com/fengju514/Face-Pose-Net
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step produces a 29D expression coefficient estimate for ev-
ery image in CASIA.

Training FEN to Predict Expression Coefficients. The ex-
pression coefficients obtained by applying Eq. (5) are used
as ground truth labels when training our FEN to regress 29D
expression coefficients. In practice, we use a ResNet101 ar-
chitecture (He et al, 2016) for this purpose. Our FEN is
trained to regress a parametric function f ({W,b},I) 7→ η ,
where {W,b} represent the parametric filters and weights of
the CNN. Note that we did not experiment with smaller net-
work structures; a more compact network architecture may
work just as well here.

We note that our FEN is similar to the one used by Tran
et al (2017) (and Sec. 3.2). We use the same network ar-
chitecture and training parameters. Unlike them, we used a
standard `2 reconstruction loss between the FEN predictions
and the expression coefficients used as ground truth. Stan-
dard stochastic gradient descent (SGD) was used for train-
ing with a mini-batch of size 144, momentum set to 0.9, and
weight decay of 5e-4. FEN weights are updated with a learn-
ing rate set to 1e-3. When the validation loss saturated, we
decreased learning rates by an order of magnitude until the
validation loss stopped decreasing. Finally, in order to expe-
dite the training, we removed the empirical mean from all
the input faces.

Estimating expression coefficients with FEN. Existing
methods for expression estimation often take an analysis-
by-synthesis approach to optimizing facial landmark loca-
tions. Contrary to them, we estimate expressions in a sin-
gle forward pass of our FEN. To estimate an expression co-
efficients vector, η t , we evaluate f ({W,b},It) for test im-
age, It . Similarly to 3D shape and viewpoint estimation, here
too we assume that the face was detected using the method
of Yang and Nevatia (2016). Here, however, we found better
results were obtained with the face detection bounding box
scaled by ×1.25, which approximates the loose bounding
boxes provided for CASIA images.

3.5 Discussion: Training labels from landmark detections?

Training of both our FPN (Sec. 3.3) and our FEN (Sec. 3.4)
followed a similar theme in which training labels were au-
tomatically synthesized by using facial landmark detectors.
This approach raises a natural concern: Wouldn’t our trained
networks be only as good as the landmark detectors used to
produce their labels?

First, recall that FPN was trained on images which some-
times underwent significant augmentations (Sec. 3.3). The
same transformations were applied to the landmarks, pro-
ducing training examples—images and viewpoint labels—
which could often be too challenging for existing landmark
detectors to process (Fig. 5). By training our FPN on these

examples, we obtain a network that can handle such chal-
lenging viewing conditions and may therefore be more ca-
pable than the original landmark detector.

More generally, however, is the well-known robustness
of deep networks to training label noise (here, errors in land-
mark detections and consequent viewpoint or expression es-
timates). This robustness is especially true in large train-
ing sets such as the 2.6 million images in the VGG Face
dataset (Parkhi et al, 2015) and the 0.5 million face images
in the CASIA WebFace collection (Yi et al, 2014) respec-
tively used in training FPN and FEN. This phenomenon was
demonstrated by Xie et al (2016), who introduced label er-
rors to improve training, and by Parkhi et al (2015), who
reported better face recognition accuracy with a network
trained with noisy labels. A similar effect is the basis for
semi-supervised methods using pseudo-labels (Dong et al,
2018c), though their approach is different from our own.

In our work, this robustness is reflected in our trained
networks learning to generalize beyond any errors in their
training labels, and so beyond the capabilities of the land-
mark detectors used to produce their labels. These improve-
ments are demonstrated in Sec. 6.

4 From FAME to landmark detection

For a given face photo, the process described in Sec. 3 pro-
vides estimates for the 3D face shape, its viewpoint, and
any deformation of its surface due to facial expressions. For
many face processing applications, these estimates would
suffice: For example, we later show that our FPN alone pro-
vides an effective means of aligning faces in 2D and 3D for
face recognition, contributing to improved recognition accu-
racy. Whenever a complete 3D modeling is desired, all three
networks can be used jointly.

Nevertheless, some applications may still require 2D fa-
cial landmark detection. In such cases, landmark coordinates
can be obtained from our 3D face modeling as a by-product
of our approach, rather being a step towards modeling.

4.1 Landmark projections

We estimate 2D facial landmarks from a 3D face shape and a
projection matrix, relating points on the 3D surface with co-
ordinates in the input image. Our FPN (Sec. 3.3) provides an
estimate for the projection matrix. 3D reference landmarks
can be specified on the surface of, say, a generic 3D face
shape (Hassner et al, 2015). 2D landmarks can then be es-
timated by projecting the reference 3D landmarks using the
projection matrix of Sec. 3.3, Eq. (3) and Fig. 6(b,c).

Projecting points from a generic shape would undoubt-
edly cause large errors, whenever the face in the image does
not share the same face shape as the generic (e.g., is wider or
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Fig. 6 From FAME to landmarks. Two examples of landmarks detected using our FAME framework. In each example: (a) Input image, (b) generic
3D face shape aligned using FPN (Sec. 3.3); reference 3D landmarks (including occluded ones) rendered in green, (c) reference 3D landmarks
projected onto image (Sec. 4.1), (d) 3D shape estimated with FaceShapeNet (Tran et al, 2017), adjusted for pose with FPN, and expression
with FEN (Sec. 3.4), (e) reference 3D landmarks on adjusted 3D shape, projected onto image (Sec. 4.1), finally, (f) 2D landmarks after refinement
(Sec. 4.2). Note refined landmarks moved from self-occluded locations (e) to the contour landmarks (f) used by 2D landmark detection benchmarks.

slimmer than the generic shape) or in cases where the facial
expression in the image affects landmark positions. These
errors are illustrated in Fig. 6(c). A more accurate estimate
of landmark locations would then project 3D landmarks
from a 3D face shape which matches the one in the image
and obtained using FaceShapeNet (Sec. 3.2) and modified
for expressions using FEN (Section 3.4).

Specifically, given the estimated shape coefficients α

(Sec. 3.2), expression coefficients η (Section 3.4), and
the projection matrix derived from the 6DoF viewpoint
(Sec. 3.3), we can reconstruct the 3D shape, F, by Eq. (1).
Because we use a standard 3DMM representation, all faces
naturally have corresponding 3D vertices: 3D points on the
face surface are consistently indexed and the same index al-
ways refers to the same facial feature (e.g., tip of the nose),
no matter the particular face shape or expression.

A consequence of this correspondence is that we can se-
lect reference 3D facial landmarks of interest, P, on an ideal
3D face shape, F, once, at preprocessing. Given a novel face
image and following our 3D modeling, we can project P
to obtain the corresponding 2D landmark points by simply
applying Eq. (3). Examples of such results are provided in
Fig. 6(e). We test the accuracy of landmarks predicted using
FPN alone (and a generic face shape) as well as by addition-
ally estimating expression and face shape in Sec. 6.3.

Importantly, unlike some landmark detection methods,
our method of obtaining facial landmarks can easily be mod-
ified for different landmark numbers and locations without
requiring re-training or redesign of the system. Instead, to
obtain detections for different landmarks, we only need to
select different reference 3D points P on F.

4.2 Landmark refinement

Our results in Sec. 6.3 show that projecting 3D landmarks
from our estimated face model, already provides reason-
able landmark accuracy. As we later discuss (Sec. 5), how-
ever, standard benchmarks for 2D facial landmark detection
often measure the accuracy of landmark prediction along
face contours—landmarks which, unlike our 3D reference
points, change according to facial pose. If such points are
desired, and to better optimize our detections to other vari-
abilities of the manual annotations of these benchmarks, we
further perform image-based, 2D landmark refinement.

To this end, we use a modified version of the regres-
sion sampler described by Bhagavatula et al (2017). In our
framework, we use this component to estimate 2D offsets
for our projected landmarks (Sec. 4.1) and refer to it as our
offset regression network. For details on the regression sam-
pler, we refer to Bhagavatula et al (2017). We found it neces-
sary, however, to make the following changes to their design
when using it in our framework.

Specifically, they used their shared feature extractor net-
work to obtain local representations at landmark coordi-
nates. We, instead, use our FPN (Sec. 3.3) for the same pur-
pose. FPN was selected as it is trained to estimate pose, and
so we expect it to capture viewpoint-related information. We
found that the FPN conv2 layer is suitable for this purpose
and use it as the input to our offset regression network.

Bhagavatula et al (2017) used two convolutional layers
in their regression sampler, with 3× 3 and 1× 1 convolu-
tions. We found that our results improved if the input to our
offset regression network was a 5× 5 convolutional layer,
which is then followed by their 3× 3 and 1× 1 layers. Fi-
nally, we appended another fully connected layer with ReLU
activation to the end of our offset regression network. This
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Fig. 7 Visualizing potential problems with facial landmark detection
benchmarks. Three example photos along with their ground truth land-
mark annotations. (a) Annotations on the jawline and bridge of the nose
do not correspond to well-defined facial features (from LFPW (Bel-
humeur et al, 2013)). (b) Landmarks represent points on the face
contour and so represent different facial locations in different views
(AFW (Zhu and Ramanan, 2012)). (c) 3D landmark annotations repre-
sent occluded facial regions (3D Menpo (Zafeiriou et al, 2017)).

layer added additional nonlinearities which were also em-
pirically determined to improve performance.

Our offset regression network was trained separately
for 2D and 3D landmark detection: for 2D training, we
used AFW (Zhu and Ramanan, 2012), the training splits of
LFPW (Belhumeur et al, 2013), HELEN (Le et al, 2012),
and AFLW-PIFA (Liu et al, 2017). We used 300W-LP (Zhu
et al, 2016b) as a training set for 3D landmark refinement.
In both cases, training labels for our offset regression net-
work were obtained by subtracting the projected landmark
locations (2D landmarks obtained by projecting 3D refer-
ence points; Sec. 4.1) from the ground truth landmark co-
ordinates provided by each benchmark. The `1 loss is used
here to prevent our model from being affected by few land-
marks with large offsets from ground truth keypoints.

All layers in our offset regression network are initialized
with parameters drawn from a Gaussian distribution with
zero mean and standard deviation 0.01. All biases are ini-
tialized with zero. During training, batch size is set to 30
and the initial learning rate is set to 0.001. Learning rate is
decreased by a factor of 0.8 per epoch until the validation ac-
curacy converges. Examples of these refined landmarks are
provided in Fig. 6(f).

5 A critique of existing test paradigms

Our framework can be used in face processing systems as
an alternative to existing facial landmark detectors. These
methods are typically tested on benchmarks designed to
measure landmark detection accuracy. Some such popu-
lar benchmarks include AFW (Zhu and Ramanan, 2012),
LFPW (Belhumeur et al, 2013), HELEN (Le et al, 2012),
iBUG (Sagonas et al, 2013), and 300W (Sagonas et al,
2016). Before testing our method, we pause to consider how
accuracy is evaluated on these benchmarks and raise a num-
ber of potential problems with these evaluation paradigms.

Detection accuracy measures. Facial landmark detection
accuracy is typically measured by considering the distances

between estimated landmarks and ground truth (reference)
landmarks, normalized by the reference inter-ocular dis-
tance of the face (Dantone et al, 2012):

e(L, L̂) =
1

m‖p̂l− p̂r‖2

m

∑
i=1
‖pi− p̂i‖2, (6)

Here, L = {pi} is the set of estimated m 2D facial landmark
coordinates, L̂= {p̂i} their ground truth locations, and p̂l , p̂r
the reference left and right eye outer corner positions. These
errors are then translated to a number of standard quanti-
ties, including the mean error rate (MER), the percentage
of landmarks detected under certain error thresholds (e.g.,
below 5% or 10% error rates) or the area under the accumu-
lative error curve (AUC).

The ground truth compared against is manually speci-
fied, often by mechanical turk workers. As we detail next,
these manual annotations can be misleading. Moreover,
Eq. (6) itself can also be misleading: Normalizing detec-
tion errors by inter-ocular distances biases against images of
faces appearing at non-frontal views. When faces are near-
profile, perspective projection of the 3D face onto the image
plane shrinks the distances between the eyes—thereby un-
naturally inflating the errors computed for such images.

Ill-defined facial locations. Recent benchmarks provide an-
notations for 49 or 68 facial landmarks. These annotations
are presumed to offer more stability than the far fewer (typi-
cally five) landmarks originally used by older sets such as
AFW (Zhu and Ramanan, 2012) and LFPW (Belhumeur
et al, 2013). By doing so, however, these extended annota-
tions include many facial locations which do not correspond
to well-defined facial features, such as points along the jaw-
line or the bridge of the nose (illustrated in Fig. 7(a)).

It is well known that human annotators tend to vary
greatly in the positions they choose for these ill-defined
landmarks (Sagonas et al, 2016). This variance, however,
is not reflected in the measures used to report accuracy
(e.g., Eq. (6)). Thus, estimating plausible positions for jaw-
line landmarks may raise or lower the error depending on
the ground truth annotations, despite any uncertainty of the
ground truth.

Viewpoint-dependent facial locations. 2D landmark detec-
tion benchmarks provide landmark annotations on face con-
tours (Fig. 7(b)). These landmark locations correspond to
different facial features in different views. Although there
may be applications which require detection of facial con-
tours, the use of these landmarks for face alignment (i.e.,
by matching them with corresponding points in reference
views; Sec. 2.3) can introduce alignment errors.

Occluded points. In response to this last problem, some
have recently proposed labeling faces with 3D points, which
correspond to the same facial features regardless of the
viewpoint (Sagonas et al, 2016; Zafeiriou et al, 2017). The



Deep, Landmark-Free FAME: Face Alignment, Modeling, and Expression Estimation 11

Fig. 8 Reference landmark selection vs. detection accuracy. 68 refer-
ence points projected from a 3D face shape to the input image, along
with landmark detection accuracy. Two sets of 3D reference points
are considered: red points were manually annotated on the reference
3D face, green points were obtained by projecting 2D landmarks, de-
tected by dlib (King, 2009; Kazemi and Sullivan, 2014) on a frontal
face image, onto the 3D reference shape. Both sets of landmarks can
be equally used for face alignment and processing, but red points pro-
duce far lower landmark prediction errors. Does this imply that the red
points are better than the green?

problem here is, of course, that because these points are oc-
cluded, it would be hard for human annotators to reliably lo-
calize these points, leading to increased uncertainty in their
ground truth annotations (Fig. 7(c)).

Illustrative examples. Fig. 8 illustrates some of these prob-
lems, using landmarks estimated with our FAME approach
and the landmark projection method of Sec. 4. In particular,
it demonstrates the effect 3D reference landmark selections
have on landmark estimation accuracies, measured on the
300W benchmark (Sagonas et al, 2016).

For each of the three example faces, we projected two
different sets of 3D landmarks using the method described
in Sec. 4. One was manually specified (red points), whereas
the other (green) was obtained by using dlib (King, 2009;
Kazemi and Sullivan, 2014) to detect 2D landmarks on a ref-
erence, frontal face photo (not shown) and projecting these
landmarks onto the 3D surface.

Both sets of points are reasonable choices for reference
facial landmarks and, of course, both sets of points can be
used for the same purposes. For example, consistently us-
ing the same reference point selection (either red or green)
would provide the landmark correspondences required for
2D or 3D face alignment between face photos (Sec. 2.3).
These correspondences would be equally accurate regard-
less of which set of reference landmarks are used (so long
as this selection is consistent).

We provide landmark detection accuracies for these two
sets of landmarks on three images from the 300W bench-
mark, using its ground truth annotations to compute these
errors. These errors are clearly very different despite the fact
that there is no real practical difference between the two sets
of points. These results support our concerns with landmark
detection benchmarks. They suggest that errors reported on
these benchmarks may not reflect meaningful differences in
the quality of different detection methods, but rather the ac-
curacy of these methods in predicting manual annotations.

Landmark detection vs. face processing application.
Consequent to this visualization, and possibly the most im-
portant concern, is that facial landmark detectors are not
used on their own but rather by face processing systems that

Table 2 Verification and identification on IJB-A and IJB-B, compar-
ing landmark detection–based face alignment methods. Three baseline
IJB-A results are also provided as reference at the top of the table. ∗

Numbers estimated from the ROC and CMC in (Whitelam et al, 2017).

Method ↓ TAR@FAR Identification Rate (%)
Eval.→ .01% 0.1% 1.0% Rank-1 Rank-5 Rank-10 Rank-20

IJB-A (Klare et al, 2015)
Crosswhite et al. (Crosswhite et al, 2017) – – 93.9 92.8 – 98.6 –
Ranjan et al. (Ranjan et al, 2017) 90.9 94.3 97.0 97.3 – 98.8 –
Masi et al. (Masi et al, 2017) 56.4 75.0 88.8 92.5 96.6 97.4 98.0

RCPR (Artizzu et al, 2013) 64.9 75.4 83.5 86.6 90.9 92.2 93.7
Dlib (King, 2009) 70.5 80.4 86.8 89.2 91.9 93.0 94.2
CLNF (Baltrusaitis et al, 2013) 68.9 75.1 82.9 86.3 90.5 91.9 93.3
OpenFace (Baltrušaitis et al, 2016) 58.7 68.9 80.6 84.3 89.8 91.4 93.2
DCLM (Zadeh et al, 2016) 64.5 73.8 83.7 86.3 90.7 92.2 93.7
3DDFA (Zhu et al, 2016b) 74.8 82.8 89.0 90.3 92.8 93.5 94.4

Our FPN 77.5 85.2 90.1 91.4 93.0 93.8 94.8
Our improved FPN 78.5 86.0 90.8 91.6 93.4 94.0 94.8

IJB-B (Whitelam et al, 2017)

GOTs (Whitelam et al, 2017)∗ 16.0 33.0 60.0 42.0 57.0 62.0 68.0
VGG Face (Whitelam et al, 2017)∗ 55.0 72.0 86.0 78.0 86.0 89.0 92.0

RCPR (Artizzu et al, 2013) 71.2 83.8 93.3 83.6 90.9 93.2 95.0
Dlib (King, 2009) 78.1 88.2 94.8 88.0 93.2 94.9 96.3
CLNF (Baltrusaitis et al, 2013) 74.1 85.2 93.4 84.5 90.9 93.0 94.8
OpenFace (Baltrušaitis et al, 2016) 54.8 71.6 87.0 74.3 84.1 87.8 90.9
DCLM (Zadeh et al, 2016) 67.6 81.0 92.0 81.8 89.7 92.0 94.1
3DDFA (Zhu et al, 2016b) 78.5 89.1 95.6 89.0 94.1 95.5 96.9

Our FPN 83.2 91.6 96.5 91.1 95.3 96.5 97.5
Our improved FPN 83.2 91.6 96.6 91.6 95.6 96.7 97.5

require landmarks for a variety of purposes. Because land-
mark detectors are tested independently of these face pro-
cessing systems, it is not clear if and how improving their ac-
curacy affects the performance of the systems that use them.
In fact, as we show in our experiments (Sec. 6), older land-
mark detectors which were outperformed on landmark de-
tection benchmarks by newer methods, sometimes provide
better bottom-line results than their newer alternatives.

6 Experimental results

We extensively test our approach and its components, re-
porting a wide range of quantitative and qualitative results.
Following the concerns raised in Sec. 5, we propose a novel
approach for evaluating face alignment and expression es-
timation methods—that is, by measuring their effect on
bottom-line performances of face recognition (Sec. 6.1) and
emotion classification benchmarks (Sec. 6.2). Doing so also
places different landmark detection techniques (with vary-
ing numbers of detected landmarks) and direct approaches
such as ours on even grounds, allowing for direct compari-
son between these methods. Although landmark prediction
is not a focus of this paper, we additionally provide exten-
sive landmark prediction results in Sec. 6.3.

We note that FaceShapeNet (Sec. 3.2) is not a contri-
bution of this paper. The 3D shapes estimated by that net-
work have been extensively tested by Tran et al (2017) and
shown to provide state-of-the-art 3D reconstruction accu-
racy as well as robustness to extreme viewing conditions.
We refer to their paper for more details on these results.
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Fig. 9 Verification and identification results on IJB-A and IJB-B. ROC and CMC curves accompanying the results reported in Table 2.

Their method, however, does not estimate viewpoint or ad-
just the 3D face to account for expressions. We therefore
focus on evaluating viewpoint and expression accuracies.

6.1 Evaluating face alignment

Facial landmarks are predominantly used for 2D and 3D
face alignment in face recognition systems (Chang et al,
2017). Rather than measure the accuracy of the landmark
positions, we therefore propose to test the effects different
landmark detectors (or, more generally, different face align-
ment techniques) have on face recognition accuracy. The ra-
tionale is that a face recognition system which uses aligned
face images would be affected by the quality of the method
used for this alignment. Better alignment should therefore
translate to better face recognition results, regardless of the
specific method used for alignment.

Importantly, the purpose of these experiments is not to
demonstrate state-of-the-art face recognition accuracy. In
particular, we do not optimize a face recognition pipeline
in order to set new recognition accuracy rates. Instead, we
use face recognition benchmarks to compare the effects of
different alignment methods.

Face recognition for evaluating face alignment. We test
our improved FPN of Sec. 3.3 independently of the other

two networks, using it to estimate the viewpoint of a face
in an input image and then align the face in 2D and 3D.
As baseline methods, we use the following popular, state-
of-the-art, facial landmark detectors: dlib (King, 2009),
CLNF (Baltrusaitis et al, 2013), OpenFace (Baltrušaitis et al,
2016), DCLM (Zadeh et al, 2016), RCPR (Artizzu et al,
2013), and 3DDFA (Zhu et al, 2016b).

We clarify that deep networks, both our FPN and some
of the baseline detectors (Baltrušaitis et al, 2016; Zadeh et al,
2016; Zhu et al, 2016b), require large quantities of train-
ing data. Training FPN requires 2.6 million images for the
AlexNet-structure and 122K for the ResNet variant. These
numbers are greater than those used to develop older meth-
ods such as dlib (King, 2009). These differences should be
considered when comparing results of these methods.

Face recognition benchmarks. Our tests use two of the
most recent benchmarks for face recognition: IARPA Janus
Benchmark A (Klare et al, 2015) and B (Whitelam et al,
2017) (IJB-A and IJB-B, resp.). Importantly, these bench-
marks were designed with the specific intention of ele-
vating the difficulty of face recognition. This heightened
challenge is reflected by, among other factors, an unprece-
dented amount of extreme out-of-plane rotated faces, in-
cluding many appearing in near-profile views (Masi et al,
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2016b). Consequently, these two benchmarks raise the bar
well above other facial landmark detection benchmarks.

Face recognition pipeline. All face alignment methods
were tested using the same face recognition pipeline, sim-
ilar to the one proposed by Masi et al (2017, 2016b); Nirkin
et al (2018). We use this system partly because its code and
trained models are publicly available, allowing for reproduc-
tion of our results.

More importantly, however, this system explicitly aligns
faces to multiple viewpoints, in both 2D and 3D. These steps
are highly dependent on viewpoint estimation quality and
so their recognition accuracy reflects viewpoint accuracy.
In practice, we used their 2D (similarity transform) and 3D
(face rendering) code directly, only changing the viewpoint
estimation step. Our tests compare different landmark de-
tectors used to recover the 6DoF head pose required by their
warping and rendering method (converting facial landmarks
as described for our FPN training data in Sec. 3.3), with the
6DoF directly regressed by our FPN.

Their system uses a single ResNet101 architecture (He
et al, 2016), trained on both real face images and synthetic,
rendered views. We found that better face recognition re-
sults can be obtained by fine-tuning their network using L2-
constrained Softmax Loss (Ranjan et al, 2017), rather than
their original Softmax (Masi et al, 2017, 2016b). This fine-
tuning is performed using the MS-Celeb face set (Liu et al,
2015) as the training set. Aside from this change, we use the
same recognition pipeline from (Masi et al, 2017), and we
refer to that paper for details.

Bounding box detection. We emphasize that we tested all
methods with an identical pipeline, only changing alignment
methods; different results vary only in the method used to
estimate facial pose. The only other difference was in the
facial bounding box detector.

Facial landmark detectors can be sensitive to the face
detector they are used with. We therefore report results
obtained when running landmark detectors with the best
bounding boxes we were able to determine for each method.
Specifically, FPN was tested with the bounding boxes re-
turned by the detector of Yang and Nevatia (2016), as de-
scribed in Sec. 3.3, including the rescale factor of ×1.25.
We found that most facial landmark detectors performed
best when applied with the same face detector but without
the 25% increase. Finally, 3DDFA (Zhu et al, 2016b) was
tested with the same face detector followed by the face box
expansion code provided by its authors.

Face verification and identification results. Face verifica-
tion and identification results on both IJB-A and IJB-B are
provided in Table 2. We report multiple recognition met-
rics for both verification and identification. For verification,
these measure the recall (true acceptance rate) at three cut-
off points of the false alarm rate (TAR-{1%,0.1%,0.01%}).

Table 3 Runtime for estimating 6DoF facial viewpoint. Times reported
in seconds for the AlexNet FPN, tested on a GPU. On the CPU, FPN
runtime was 0.07 seconds. 3DDFA used the AFW collection for train-
ing. Code provided for 3DDFA (Zhu et al, 2016b) did not allow testing
on the GPU; their paper reports GPU runtime to be 0.076s.

RCPR Dlib CLNF OpenFace DCLM 3DDFA Our FPN

0.19 0.009 0.38 0.31 15.83 0.6 0.005

For identification we provide recognition rates at four ranks
from the CMC (cumulative matching characteristic). The
overall performances in terms of ROC and CMC curves are
shown in Fig. 9. For clarity, the figure only reports results for
the ResNet101 version of our FPN. The table also provides,
as reference, three state-of-the-art IJB-A results (Crosswhite
et al, 2017; Masi et al, 2017; Ranjan et al, 2017) and baseline
results from (Whitelam et al, 2017) for IJB-B. To our knowl-
edge, we are the first to report verification and identification
accuracies on IJB-B.

Faces aligned with our original FPN and the ResNet101
FPN (improved FPN) lead to better recognition accuracy,
even compared to the most recent, state-of-the-art facial
landmark detection method of (Zadeh et al, 2016). Remark-
ably, faces aligned with FPN provide substantially better
recognition accuracy than those aligned with the facial land-
mark detector of Baltrušaitis et al (2016), which is the
method used to produce the viewpoint labels for training our
FPN. This result supports the claims made in Sec. 3.5 on the
robustness of deep networks to label noise.

Face alignment runtime. An important factor when design-
ing face processing pipelines is the speed required by dif-
ferent components in these systems. We therefore measure
the run time required by different face alignment methods.
Our tests were performed on a machine with an NVIDIA,
GeForce GTX TITAN X, 12GB RAM, and an Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60GHz, 132GB RAM. The
only exception was 3DDFA (Zhu et al, 2016b), which re-
quired a Windows system and was tested using an Intel(R)
Core(TM) i7-4820K CPU @ 3.70GHz (8 CPUs), 16GB
RAM, running MS-Windows 8 Pro, 64-bit.

Table 3 reports mean, per-image runtime for landmark
detection compared with our AlexNet-based FPN. FPN is
an order of magnitude faster than nearly all other alignment
methods. Dlib (King, 2009) is slightly slower than FPN, but
far less accurate in the face recognition tests (Table 2).

Also noteworthy is that although our FPN produced bet-
ter recognition results, of all the other methods, those of dlib
were nearly the best. This is significant, as dlib is one of
the oldest methods. Later methods were shown to excel on
landmark detection benchmarks. The fact that the older dlib
produces better face recognition results despite no longer
being state-of-the-art on landmark detection benchmarks,
supports our concerns regarding these landmark detection
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benchmarks and the common practice of measuring detec-
tion accuracy independently from bottom-line performance
of the methods which use these detectors (Sec. 5).

6.2 Evaluating expression estimation

We next compare different means of estimating non-rigid fa-
cial deformations due to expressions. It is important to note
that few previous methods for 3DMM face shape estimation
provided quantitative results; instead, most relied primarily
on qualitative examples. Although we similarly offer quali-
tative results of our face modeling, including expression es-
timation (Sec. 6.4), we also provide quantitative results.

We propose to compare different methods designed to
capture facial expressions: facial landmark detection meth-
ods typically used for this purpose and our FEN. Because
we are unaware of any benchmark designed for estimating
facial expression accuracy, we propose instead to use emo-
tion classification benchmarks for this purpose. Specifically,
we use estimated facial expressions as feature vectors and
test how well these feature vectors capture the seven facial
emotions in emotion classification benchmarks.

We again note that our goal is not to break classification
accuracy records on these benchmarks. Although some emo-
tion classification methods use landmark detection for this
purpose, others take a direct, landmark-free approach and
produce deep emotion features directly from image intensi-
ties (Levi and Hassner, 2015; Surace et al, 2017). Our goal
is not to outperform these methods, but only to use exist-
ing emotion classification benchmarks as quantitative tests
of facial expression estimation methods.

Benchmark settings. We use two emotion classification
benchmarks containing face images labeled for discrete
emotion classes. For each image we estimate its expression
coefficients, either directly using our FEN or 3DDFA, or by
using detected landmarks to solve Eq. (5) for the expres-
sion coefficients, as described in Sec. 3.4. We then attempt
to classify the emotion of a test image using the same, sim-
ple classification pipeline applied to the different 29D ex-
pression estimates.

Our tests use the Extended Cohn-Kanade (CK+)
dataset (Lucey et al, 2010) and the Emotion Recognition in
the Wild Challenge (EmotiW-17) dataset Dhall et al (2017).
The CK+ dataset is a constrained set, with frontal faces
taken in the controlled conditions. EmotiW-17, on the other
hand, contains highly challenging video frames collected
from 54 movie DVDs (Dhall et al, 2012).

The CK+ dataset contains 327 face video clips labeled
for seven emotion classes: anger (An), contempt (Co), dis-
gust (Di), fear (Fe), happy (Ha), sadness (Sa), surprise (Su).
From each clip, we take the peak frame (the end of video)—
the frame assigned with an emotion label—and use the ex-

pression estimated from it for emotion classification. Fol-
lowing the protocol used by Lucey et al (2010), we ran a
leave-one-subject-out test protocol to assess performance.

The EmotiW-17 dataset, on the other hand, contains
383 face video clips. These clips are labeled for the seven
emotion classes: anger (An), disgust (Di), fear (Fe), happy
(Ha), neutral (Ne), sadness (Sa), surprise (Su). We estimate
29D expression representations for every frame and apply
element-wise average pooling over the estimated expression
coefficients of all frames in each video.

Finally, we also evaluate the robustness of different
methods to scale changes. Specifically, we tested all meth-
ods on multiple versions of the CK+ and EmotiW-17 bench-
marks, each version with all images scaled down by factors
of ×0.8, 0.6, 0.4, and 0.2 of their sizes.

Emotion classification pipeline. The same, simple classifi-
cation method was used in all our tests. We preferred a sim-
ple classification method, rather than a state-of-the-art tech-
nique, in order to avoid masking the accuracy of the land-
mark detector/emotion estimation with an elaborate classi-
fier. We therefore use a simple kNN classifier with K = 5,
without optimizing for K. Nevertheless, we additionally re-
port results with a SVM (RBF kernel) to show the consis-
tent improvement of our method irrespective of the classifier
used. Of course, all reported results are far from the state-
of-the-art on this set. As previously noted, our goal is not to
outperform state-of-the-art emotion classification, but rather
to compare methods for expression coefficient estimation.

Baseline methods. We compare our approach to widely
used, state-of-the-art face landmark detectors: Dlib (King,
2009), CLNF (Baltrusaitis et al, 2013), OpenFace (Bal-
trušaitis et al, 2016), DCLM (Zadeh et al, 2016), RCPR Ar-
tizzu et al (2013), and 3DDFA (Zhu et al, 2016b). Of these,
3DDFA is the only one that, similar to our FEN, directly
estimates 29D expression coefficients vectors. For all other
methods, following landmark detection, expression coeffi-
cients were estimated using Eq. (5).

Emotion classification results. Fig. 10 reports the emotion
classification confusion matrix on the original CK+ data
set (unscaled) for our FEN (Fig. 10c), comparing it to the
other two best performing methods: 3DDFA (Fig. 10b) and
DCLM (Fig. 10a). Our expression coefficients were able
to capture emotions of surprise (Su), happy (Ha), and dis-
gust (Di), but were less able to represent more subtle facial
emotions: anger (An), contempt (Co), fear (Fe), and sadness
(Sa). These same classes were not handled well by the other
methods. Overall, however, our expressions were noticeably
better at capturing all emotion classes.

Figure 11 shows the emotion classification confusion
matrix on the original EmotiW-17 data set (unscaled). Our
expression coefficients were able to capture neutral (Ne),
happy (Ha), sad (Sa), and angry (An), but were less able
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(a) (b) (c)

Fig. 10 Confusion Matrices for emotion classification on the CK+ benchmark. Classification confusions on the seven emotion classes in CK+, for
the original (unscaled) images. Results provided for the top performing three methods: (a) DCLM landmarks (Zadeh et al, 2016) and Expression
Fitting, (b) the deep, direct method of (Zhu et al, 2016b), (c) our FEN.

(a) (b) (c)

Fig. 11 Confusion Matrices for emotion classification on the EmotiW-17 benchmark. Classification confusions on the seven emotion classes in
EmotiW-17, for the original (unscaled) images. Results provided for the top performing three methods: (a) CLNF landmarks (Baltrusaitis et al,
2013) and Expression Fitting, (b) the deep, direct method of (Zhu et al, 2016b), (c) our FEN.

to represent the emotions which were less clearly defined
by expressions in the benchmark: disgust (Di), fear (Fe),
and surprise (Su), which from our observations, often ap-
pear very similar to angry (An). Note that these confusion
matrices reflect our experiments with a kNN classifier.

Sensitivity to scale changes. Figure 12 and Figure 13 addi-
tionally provide emotion classification performances of all
methods on both CK+ and EmotiW-17 images, but with in-
creasing scale changes, for both the kNN and SVM classi-
fiers. The plot shows the sensitivity of each tested method
with respect to the input resolution. The x-axis reports the
downsizing applied to the images, with a factor proportional
to the scale. That is, scale = 1 represents original image
sizes (640×490 for CK+; 730×576 for EmotiW-17), while
the lowest scale of 0.2 refers to 128×98 images in CK+ and
146×115 in EmotiW-17. Note that whenever deep networks
were used, images were subsequently rescaled to the size of
the input layer: 224×224.

Figures 12 and 13 both show that our approach is not
only the most accurate, but also the most stable across scale
changes. This robustness indicates that facial landmark de-
tection methods are more sensitive to scale changes; the
same face at different scales results in different landmark
detections. This is an important factor that is not explicitly
examined by facial detection benchmarks. The figures also
show that SVM generally performs better than kNN but, im-
portantly, the improvement of our approach over landmark-
based methods is consistent, irrespective of the classifier.

Qualitative expression results. Fig. 14 provides rendered
views of the expressions estimated for CK+ images labeled
as presenting fear, surprise, and contempt facial emotions.
These examples illustrate estimates obtained on the origi-
nal images (×1) and the images scaled down to the lowest
resolution (×0.2). The figure also provides results for the
two methods which performed best (aside from our FEN):
DCLM (Zadeh et al, 2016) and 3DDFA (Zhu et al, 2016b).
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Fig. 12 Emotion classification over scales on the CK+ benchmark. Curves report emotion classification accuracy over different scales of the input
images. Lower scale indicates lower resolution. Original resolution is 640×490. (a) reports results with a simple kNN classifier. (b) Same as (a),
now using a SVM (RBF kernel) classifier.
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Fig. 13 Emotion classification over scales on the EmotiW-17 benchmark. Curves report emotion classification accuracy over different scales of
the input images. Lower scale indicates lower resolution. Original resolution is 720×576. (a) reports results with a simple kNN classifier. (b) Same
as (a), now using a SVM (RBF kernel) classifier.

These rendered images support our quantitative results, and
show that DCLM produces visibly different expression co-
efficients for images at different scales (e.g., DCLM results
for surprise).

Fig. 15 provides additional qualitative results on uncon-
strained, EmotiW-17 images. Here the two best performing
methods (other than our own) were CLNF (Baltrusaitis et al,
2013) and 3DDFA (Zhu et al, 2016b). CLNF is noticeably
affected by scale changes (e.g., neutral).

Expression estimation runtime. Table. 4 lists runtimes for
the various methods tested in our experiments. Our method
is the fastest. We note that expression fitting methods rely-
ing on landmarks involve three separate steps: (i) landmark
detection, (ii) pose estimation, and (iii) expression fitting.
By doing so, the total processing time is a sum of multi-
ple factors. Thus, although some landmark detection meth-
ods (e.g., dlib) are very efficient in extracting landmarks
(0.009s), they still need to address the optimization prob-

lem of Eq. (5), leading to a runtime which is slower than the
proposed method.

We again note that code for the 3DDFA method of Zhu
et al (2016b) was released for use on the CPU. In their paper
they report GPU performances which are much faster (0.076
seconds for landmark detection). Runtimes were measured
on the same machines used in Sec. 6.1.

6.3 Landmark detection accuracy

Sec. 4 explains how facial landmark estimates can be ob-
tained from our 3D models. Although our goal is 3D face
modeling and not breaking published state-of-the-art per-
formance on face landmark detection benchmarks, it is in-
structional to consider the accuracy of landmarks estimated
as a by-products of our FAME approach. We therefore
tested our method on landmark detection benchmarks for
2D landmarks—the 300W (Sagonas et al, 2016) and AFLW-
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Fig. 14 Qualitative expression estimation on CK+. Example results
for fear, surprise, and contempt facial emotions. Results provided for
the original images (×1) and the images scaled down to the low-
est resolution (×0.2). Results provided for the three best performing
methods: DCLM (Zadeh et al, 2016), 3DDFA (Zhu et al, 2016b), and
our FEN. Compared with FEN, 3DDFA overestimates expressions and
DCLM is visibly less stable across scale changes. Note: Results ren-
dered with a generic shape and fixed viewpoint.

Table 4 Expression estimation runtime. Runtime for expression fit-
ting for recent methods. Landmark-based methods need to address for
landmark extraction and then optimization fitting at test-time; where as
deep methods are solving the entire problem in a single step. Note: time
for pose and expression fitting are shared by all five landmark–based
methods. Time reported in seconds per image.

Landmark-based Deep, Direct

Time Dlib DCLM OpenFace CLNF RCPR 3DDFA Us
Landmarks 0.009 15.83 0.31 0.38 0.19 – –

Pose Fitting — 0.29 — – –
Expr. Fitting — 0.30 — – –

Total 0.599 16.42 0.90 0.97 0.78 0.6 0.088

PIFA (Jourabloo and Liu, 2016) benchmarks—and 3D land-
marks, the AFLW 2000-3D dataset (Zhu et al, 2016b).

300W. 300W (Sagonas et al, 2016) contains multiple face
alignment sets with 68 landmark annotations: AFW, LFPW,
HELEN, and iBUG.

Fig. 15 Qualitative expression estimation on EmotiW-17. Example re-
sults for neutral, surprise, and happy facial emotions. Results provided
for the original images (×1) and the images scaled down to the lowest
resolution (×0.2). Baseline results for the three best performing meth-
ods: CLNF (Baltrusaitis et al, 2013), 3DDFA (Zhu et al, 2016b), and
our FEN. Compared with FEN, 3DDFA overestimates expressions and
CLNF is less stable across scale changes. Note: Results rendered with
a generic shape and fixed viewpoint.

AFLW-PIFA. This dataset (Jourabloo and Liu, 2015) offers
5200 images sampled from AFLW (Köstinger et al, 2011)
with a balanced distribution of yaw angles and left vs. right
viewpoints. Each image is labeled with up to 21 landmarks
with a visibility label for each landmark. Jourabloo and Liu
(2016), offer 13 additional landmarks for these images, for
a total of 34 landmarks per image.

AFLW2000-3D. 3D face modeling and alignment is widely
evaluated on the set offered by Zhu et al (2016b). The data
set contains ground truth 3D faces and corresponding 68
landmarks for the first 2000 AFLW samples.

Importantly, ground truth annotations in 300W and
AFLW-PIFA are provided only for visible face contours.
Thus, the same landmarks in different images reflect differ-
ent facial details (Sec. 5). Landmark annotations in AFLW
2000-3D (Zhu et al, 2016b), on the other hand, reflect the
same facial features, though these features may be self-
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Table 5 The NME (%) of 68 point detection results on 300W with
ground truth bounding boxes provided by 300W. We use the typical
split: Common (HELEN and LFPW), Challenging (iBUG), and Full
(HELEN, LFPW, and iBUG). * These methods were tested by us us-
ing codes provided by their authors.

Method Comm. Chall. Full Sec./im.

TSPM (Zhu and Ramanan, 2012) 8.22 18.33 10.20 -
ESR (Cao et al, 2014) 5.28 17.00 7.58 -
CFAN (Zhang et al, 2014) 5.50 16.78 7.69 -
RCPR (Artizzu et al, 2013) 6.18 17.26 8.35 0.19
SDM (Xiong and De la Torre, 2013) 5.57 15.40 7.50 -
LBF (Ren et al, 2014) 4.95 11.98 6.32 -
Dlib* (King, 2009) 5.41 20.31 8.33 0.009
CLNF* (Baltrusaitis et al, 2013) 5.64 17.08 7.88 0.19
OpenFace* (Baltrušaitis et al, 2016) 4.57 14.41 6.50 0.28
TCNN (Wu et al, 2017) 4.10 11.86 5.62 -
PCD-CNN (Kumar and Chellappa, 2018) 3.67 7.62 4.44 -
DCLM (Zadeh et al, 2016) 3.42 7.66 4.25 15.83
3DDFA (Zhu et al, 2016b) 6.15 10.59 7.01 0.6
3DDFA+SDM (Zhu et al, 2016b) 5.53 9.56 6.31 -

FPN (AlexNet), FEN (ResNet101), FaceShapeNet (ResNet101)
FPN 8.34 13.78 9.40 0.005
FPN+FEN+FaceShapeNet 5.80 11.39 6.89 0.029
FPN+FEN+FaceShapeNet+ref. 5.03 10.59 6.12 0.20

FPN (ResNet101), FEN (ResNet101), FaceShapeNet (ResNet101)
FPN 5.78 9.82 6.57 0.088
FPN+FEN+FaceShapeNet 3.93 7.57 4.64 0.112
FPN+FEN+FaceShapeNet+ref. 3.34 6.56 3.97 0.283

Table 6 The NME (%) of 68 point detection results on 300W with
the bounding box provided by the face detector of Yang and Nevatia
(2016). We use the typical splits: Common (HELEN and LFPW), Chal-
lenging (iBUG), and Full (HELEN, LFPW, and iBUG).

Method Comm. Chall. Full Sec./im.

RCPR (Artizzu et al, 2013) 8.58 22.33 11.27 0.19
Dlib (King, 2009) 4.50 17.23 6.99 0.009
CLNF (Baltrusaitis et al, 2013) 8.19 21.09 10.72 0.38
OpenFace (Baltrušaitis et al, 2016) 4.81 15.45 6.90 0.31
DCLM (Zadeh et al, 2016) 4.10 13.74 5.99 15.83
3DDFA (Zhu et al, 2016b) 10.64 12.87 11.08 0.6

FPN (AlexNet), FEN (ResNet101), FaceShapeNet (ResNet101)
FPN 8.17 13.14 9.14 0.005
FPN+FEN+FaceShapeNet 5.77 10.84 6.76 0.029
FPN+FEN+FaceShapeNet+ref. 5.51 10.33 6.45 0.20

FPN (ResNet101), FEN (ResNet101), FaceShapeNet (ResNet101)
FPN 6.35 11.38 7.33 0.088
FPN+FEN+FaceShapeNet 4.79 9.67 5.75 0.112
FPN+FEN+FaceShapeNet+ref. 3.97 8.51 4.86 0.283

occluded in different images and their locations were there-
fore guessed by the annotators. Regardless, landmark anno-
tations in all these benchmarks are conceptually different.

Evaluation metrics. Alignment accuracy is evaluated by the
normalized mean error (NME): the average of landmark er-
ror normalized by the interocular distance on 300W (Sago-
nas et al, 2016), and by the bounding box size on AFLW-
PIFA and AFLW2000-3D datasets (Jourabloo and Liu,
2015; Yu et al, 2013).

300W results with ground truth bounding boxes. We fol-
low the standard protocol of Zhu et al (2015a), where the
training part of LFPW, HELEN and the entire AFW are used
for fine-tuning our FAME networks, and perform testing on
three parts: the test samples from LFPW and HELEN as

the common subset, the 135-image iBUG as the challeng-
ing subset, and the union of them as the full set with 689
images in total.

Table 5 compares our landmark detection errors with
those of recent state-of-the-art methods. We use the ground
truth face bounding boxes provided by the benchmark. Note
that all the baseline results provided in Table 5 except for
dlib, CLNF, and OpenFace were reported by their authors in
the original publications.

Our results (FPN (AlexNet) + FEN (ResNet101) + Face-
ShapeNet (ResNet101) + refinement) achieve comparable
results with the recent state-of-the-art (Zhu et al, 2016b). Al-
though more accurate detections are reported by Zadeh et al
(2016), their method is three orders of magnitude slower
than our own. Furthermore, as our face recognition results
show in Sec. 6.1, better landmark detection accuracy does
not always imply better bottom-line performance of the face
processing pipeline.

Finally, we note the effects of better approximating the
3D face shape, as evident in our bottom three results. Land-
marks estimated using FPN alone are not particularly ac-
curate. By adding shape and expression estimation (FPN
+ FEN + FaceShapeNet), predictions are substantially im-
proved. Landmark refinement (Sec. 4.2) provides an addi-
tional drop in landmark localization errors compared with
the manual annotations.

We report additional improvement in detection accuracy
by adopting the deeper ResNet101 version of our FPN and
training it with more profile faces (Sec. 3.3). Some of this
improvement may be due to the fact that our method esti-
mates positions for fixed, physical facial positions, includ-
ing positions that are occluded from view, whereas 300W
measures accuracy of contour points which change depend-
ing on viewpoint (Sec. 5). Refinement moves our landmarks
towards the visible contour (see Fig. 6(e) vs. (f)) and reduces
some of these errors.

300W results with detected bounding boxes. The 300W
benchmark provides ground truth face bounding boxes for
all of its images. In practical scenarios, such bounding boxes
would likely not be available, and a face detection method
would be used to obtain these bounding boxes. We there-
fore tested performances on 300W images using detected
bounding boxes. Our FAME networks are fine-tuned on the
training parts of LFPW, HELEN, and the entire AFW us-
ing the same face detector. The results are provided in Ta-
ble 6. Fig. 16 additionally offers cumulative error distribu-
tion (CED) curves on 300W with detected bounding boxes.

The same face detection method of Yang and Nevatia
(2016) was used with all landmark detectors. Because land-
mark detectors can be sensitive to the choice of face de-
tection method, we attempted to optimize performances for
these baseline methods by scaling the face detection bound-
ing box, using the best scaling for each method. Note that
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Fig. 16 Comparisons of CED curves on 300W with the face bounding boxes detected by (Yang and Nevatia, 2016). Results provided for the
Common (HELEN and LFPW), Challenging (iBUG), and Full (HELEN, LFPW, and iBUG) splits.

Table 7 The NME (%) of 68 point detection results on AFLW2000-3D for different ranges of yaw angles.

Method [0,30] (30,60] (60,90] mean std

RCPR (Artizzu et al, 2013) 4.26 5.96 13.18 7.80 4.74
ESR (Cao et al, 2014) 4.60 6.70 12.67 7.99 4.19
SDM (Xiong and De la Torre, 2013) 3.67 4.94 9.76 6.12 3.21
3DDFA (Zhu et al, 2016b) 3.78 4.54 7.93 5.42 2.21
3DDFA+SDM (Zhu et al, 2016b) 3.43 4.24 7.17 4.94 1.97
3DSTN (AlexNet) (Bhagavatula et al, 2017) 3.71 5.33 7.19 5.41 1.74
3DSTN (VGG-16) (Bhagavatula et al, 2017) 3.15 4.33 5.98 4.49 1.42

FPN (AlexNet), FEN (ResNet101), FaceShapeNet (ResNet101)
FPN 5.38 10.31 19.08 11.59 6.94
FPN+FEN+FaceShapeNet 4.20 5.12 8.14 5.82 2.06
FPN+FEN+FaceShapeNet+refinement 3.35 4.15 7.05 4.85 1.94

FPN (ResNet101), FEN (ResNet101), FaceShapeNet (ResNet101)
FPN 3.78 4.23 7.25 5.09 1.89
FPN+FEN+FaceShapeNet 3.46 4.13 7.09 4.89 1.93
FPN+FEN+FaceShapeNet+refinement 3.11 3.84 6.60 4.52 1.84

Table 8 NME (%) results on the AFLW dataset under the PIFA proto-
col (Jourabloo and Liu, 2015, 2016). ∗ Followed a non-standard train-
ing/testing setting on the AFLW dataset.

Method 34 land. 21 land.

RCPR (Artizzu et al, 2013) 6.26 7.15
CFSS (Zhu et al, 2015a) 6.75 -
PIFA (Jourabloo and Liu, 2015) 8.04 6.52
CCL (Zhu et al, 2016a) 5.81 -
PAWF (Jourabloo and Liu, 2016) 4.72 -
DeFA (Liu et al, 2017) 3.86 -

KEPLER (Kumar et al, 2017)* - 2.98

FPN 4.79 4.75
FPN+FEN+FaceShapeNet 4.20 4.09
FPN+FEN+FaceShapeNet+ref. 4.03 3.9

we report baseline results in Table 6 only for methods for
which we could find code available. Our results are, how-
ever, consistent with those reported by the different authors,
appearing in Table 5.

There are a number of noteworthy observations from our
results in Table 6. First, the accuracy of all methods tested
here dropped somewhat compared to the precision reported
using ground truth bounding boxes (Table 5). All variations

of our approach, however, show only small drops in accu-
racy. We attribute this robustness to face bounding boxes to
the scale changes which we synthetically introduced to the
data set used to train our FPN (Sec. 3.3). By making our net-
work robust to scale changes, it better handles differences in
the tightness of the detected facial bounding boxes.

Another remarkable result is that in a realistic use-case
where a face detector is used to obtain face bounding boxes,
dlib (King, 2009) appears to perform very well, despite
its age and despite being the fastest landmark detector we
tested. This result is consistent with those in Sec. 6.1 where
dlib also performed well in aligning faces for recognition.

Finally, our method (FPN + FEN + FaceShapeNet + re-
finement) obtains the most accurate landmark detection re-
sults. Even without the landmark-specific refinement step,
the accuracy of our approach (FPN + FEN + FaceShapeNet)
is comparable to the existing state-of-the-art, DCLM (Zadeh
et al, 2016), outperforming it on both the challenging and
full splits despite being at least an order of magnitude faster.

Landmark detection runtime. Both Tables 5 and 6 also
report the runtimes for the various methods we tested. These
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runtimes were all measured by us on the same machine (see
Sec. 6.1); missing results in Table 5 represent methods for
which we were unable to run the code ourselves.

It is worth noting that our full FAME approach is only
slower than RCPR (Artizzu et al, 2013) and the very fast
dlib (King, 2009). These two methods, however, provide less
accurate rigid alignment than even our (much faster) FPN
alone (Sec. 6.1) and are less accurate than our full approach
in landmark localization (Tables 5 and 6).

AFLW 2000-3D results. Because we estimate 3D face
shape, we can also report landmark detection accuracy with
3D landmarks on the AFLW 2000-3D benchmark of Zhu
et al (2016b). Results are provided in Table 7 for three cat-
egories of the absolute yaw angles: [0,30], (30,60], and
(60,90]. Following Bhagavatula et al (2017), we use the
bounding box associated with 68 landmarks. The NME is
computed using the bounding box size. The cumulative er-
ror distribution (CED) curves are reported in Fig. 17. All
baselines except for 3DSTN (Bhagavatula et al, 2017) were
reported by their respective authors.

The very recent method of Bhagavatula et al (2017) ap-
pears to perform better than most other baselines in most of
the tests. Our approach (FPN + FEN + FaceShapeNet + re-
finement) is the most accurate in the ranges [0.30] (30,60],
coming in second in (60,90], outperforming other meth-
ods designed for 3D landmark detection (e.g., 3DDFA (Zhu
et al, 2016b)). Even without the landmark-specific refine-
ment step, our method is the most accurate in (30,60].

AFLW-PIFA results. We report landmark detection results
on AFLW, strictly following the PIFA protocol suggested
by Jourabloo and Liu (2015).2 PIFA provides 5,200 images
where the numbers of images with absolute yaw angle view-
points within [0,30), [30,60), [60,90] are approximatively
one third each. Finally, 3,901 of these images are used for
training and 1,299 for testing. Note that Kumar et al (2017)
used many more images to train (23,386) and a different test-
ing partition with 1000 images. Their results are not directly
comparable to all others.

All AFLW-PIFA images are labeled with up to
21 landmarks (Jourabloo and Liu, 2015) and 34 land-
marks (Jourabloo and Liu, 2016). Results based on our best
method using FPN, FEN, and FaceShapeNet (all with a
ResNet101 architecture) are provided in Table 8. For fair
comparison, we report results for both 34 landmarks and 21
landmarks.

Discussion: FAME vs. OpenFace. The face recognition re-
sults reported in Sec. 6.1 demonstrate that our FPN better
aligns faces for face recognition than OpenFace Baltrušaitis
et al (2016), the method used to produce pose labels for
training our FPN. In this section, Tables 5 and 6 directly

2 The train/test partitions of PIFA are available at http://cvlab.
cse.msu.edu/project-pifa.html
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Fig. 17 Comparisons of CED curves on AFLW2000-3D. To balance
the yaw distributions, we randomly sample 699 faces from AFLW
2000-3D, split evenly among the 3 yaw categories and compute the
CED curve. This is done 10 times and the average of the resulting CED
curves are reported.

compare the landmark detection accuracy of our FAME ap-
proach with the accuracy reported by OpenFace.

Alone, the landmark accuracy of FPN is comparable
with OpenFace—FPN matching the accuracy of the method
used to train it—though FPN is nearly an order of magnitude
faster and, unlike OpenFace, was not designed or optimized
for landmark detection. This is not entirely surprising, as
FPN is trained to solve a 6D regression problem (six floating
point numbers), whereas landmark detection methods such
as OpenFace try to solve a harder 2×49 or 2×68 dimen-
sional regression task (49 or 68 integer 2D image coordi-
nates). With a simpler regression problem, we can therefore
train FPN to achieve better accuracy than the method used to
produce its labels. Importantly, even without the refinement
step which optimizes for landmark localization, our FAME
approach clearly outperforms OpenFace.

6.4 Qualitative results

We visualize the results of our FAME approach (FPN +
FEN + FaceShapeNet) by rendering 3D face shape esti-
mates, super-positioned over the original input images. We
use images from the IJB-A benchmark for this purpose.

Fig. 18 provides a few examples of the limitations of our
approach, comparing them with the results obtained by the
state-of-the-art 3DDFA of Zhu et al (2016b). Because pro-
file views are underrepresented in the VGG Face set used
to train our FPN in Sec. 3.3, our network is conservative in
the poses it estimates, preferring lower than 90◦ yaw angles
(Fig. 18(a)). 3DDFA was explicitly designed to handle such
profile views and so better handles such images. Both meth-
ods fail on images with other extreme viewpoints: larger
than profile yaw rotations of the head (Fig. 18(b)) and ex-
treme scales (Fig. 18(c)).

http://cvlab.cse.msu.edu/project-pifa.html
http://cvlab.cse.msu.edu/project-pifa.html
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Finally, Fig. 19 provides a wide range of example 3D
reconstructions, produced using IJB-A images. These re-
sults were selected to represent varying expressions, view-
points, ethnicities, genders, facial expressions, occlusions,
and different image qualities. We provide baseline results for
3DDFA (Zhu et al, 2016b) and the FaceShapeNet method
of Tran et al (2017) (adjusted for viewpoint using FPN,
Sec. 3.3). Our estimated 3D shapes clearly capture subject-
specific facial attributes (e.g., ethnicity and gender). Expres-
sions are also very evident on the reconstructed shapes.

Our results are especially remarkable considering the ex-
treme conditions in some of these images: Severe occlusions
Fig. 19(a,f,h,q), very low-quality photos in Fig. 19(c,e,q),
and a wide range of scales (see Fig. 19(b) vs. Fig. 19(l,n)).

7 Conclusions

Over the past decade, facial landmark detection methods
have played a tremendous part in advancing the capabili-
ties of face processing applications. Despite these contribu-
tions, landmark detection methods and the benchmarks that
measure their performances have their limits. We show that
deep learning can be leveraged to perform tasks that, until
recently, required the use of these facial landmark detectors.
In particular, we show how face shape, viewpoint, and ex-
pression can be estimated directly from image intensities,
without the use of facial landmarks. Moreover, facial land-
marks can be obtained as by-products of our deep 3D face
modeling process.

By proposing an alternative to facial landmark detection,
we must also provide novel alternatives for evaluating the ef-
fectiveness of landmark-free methods such as our own. We
therefore compare our method with facial landmark detec-
tors by considering the effect these methods have on the bot-
tom line performances of the methods that use them: face
recognition for rigid 2D and 3D face alignment, and emo-
tion classification for non-rigid, expression estimation. Of
course, these tests are not meant to be exhaustive: This eval-
uation paradigm can potentially be extended to other bench-
marks, representing other face processing tasks.

In addition to extending our tests to other face process-
ing applications, another potential direction for future work
is improvement of our proposed FAME framework. Specif-
ically, notice that our FPN is trained to estimate pose for a
generic face shape, whereas in practice, the 3D face shape
that we project is subject- and expression-adjusted to the
input face. This discrepancy can lead to misalignment er-
rors, even if small ones. These errors may be mitigated by
combining the three networks into a single, jointly learned,
FAME network.
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