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Abstract

We introduce our method and system for face recognition
using multiple pose-aware deep learning models. In our
representation, a face image is processed by several pose-
specific deep convolutional neural network (CNN) models
to generate multiple pose-specific features. 3D rendering is
used to generate multiple face poses from the input image.
Sensitivity of the recognition system to pose variations is re-
duced since we use an ensemble of pose-specific CNN fea-
tures. The paper presents extensive experimental results on
the effect of landmark detection, CNN layer selection and
pose model selection on the performance of the recognition
pipeline. Our novel representation achieves better results
than the state-of-the-art on IARPA’s CS2 and NIST’s 1JB-A
in both verification and identification (i.e. search) tasks.

1. Introduction

Face recognition has been one of the most challenging
and attractive areas of computer vision. The goal of face
recognition algorithms is to answer the question, who is this
person in a given image or video frame? Face recognition
algorithms generally try to address two problems — iden-
tify verification and subject identification. Face verification,
as known as the 1 : 1 matching problem [ 1], answers the
question, are these two people actually the same?, while
face identification, also known as the 1 : N problem [1 1],
answers the question, who is this person, given a database
of faces?
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Labeled Faces in the Wild (LFW) dataset [8] is consid-
ered one of the most important benchmarks for face recog-
nition research. Recent advances, especially in applying
convolutional neural networks (CNN) to face recognition,
enabled researchers of achieving close to 100% recognition
rates [0]. However, face recognition problem is far from
solved, especially in an uncontrolled environment with ex-
treme pose, illumination, expression and age variations. In-
deed, as discussed in [ 1], state-of-the-art commercial and
open-source face recognition systems performed far less
than satisfactory on the recently released National Insti-
tute of Standards and Technology’s (NIST) IARPA Janus
Benchmark-A (IJB-A), which is considered much more
challenging, than LFW, in terms of the variability in pose,
illumination, expression, aging, resolution, efc. [19, 15, 5].

IJB-A dataset has been quickly adopted by the research
community. In [19], the authors represent a face image as
a feature vector using a trained convolutional neural net-
work and hash this feature vector to achieve fast face search.
Chowdhury et al. in [15] fine-tunes a trained base-model of
a symmetric bilinear convolutional neural network (BCNN)
to extract face features, and trains subject-based SVM clas-
sifiers to identify individuals. In [5], Patel et al. use a
trained CNN model to represent a face, and additional joint-
Bayesian metric learning to assess the similarity between
two face representations.

In this paper we present our face recognition pipeline
using a novel multi-pose deep face representation. Unlike
previous efforts [15, 5, 19] that consider pose variations im-
plicitly, we explicitly leverage the variations of face poses
by (1) representing a face with different (aligned and ren-
dered) poses using different pose-specific CNNs and (2)
perform face similarity comparisons only using same pose



CNNs. To our best knowledge, this is the first attempt to
use multi-pose in face recognition. This novel approach is
applied to IJB-A dataset and is shown to surpasses the state-
of-the-art algorithms [15, 5, 19], without additional domain
adaptation or metric learning.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the training and testing datasets. In Sec-
tion 3 we discuss our conceptual single representation along
with instances of different pose experts, and the proposed
multi-pose representation for face recognition. Evaluation
protocols and results of the proposed recognition pipeline
are presented in Section 4. We conclude the paper in Sec-
tion 5.

2. Facial Datasets Employed

We use CASTA-WebFace [22] for training and both 1JB-
A [11] and IARPA’s Janus CS2 for evaluation. Following is
a brief description of these datasets.

CASIA-WebFace [22] dataset is the largest known pub-
lic dataset for face recognition. Specifically, CASIA-
WebFace contains 10, 575 subjects with a total of 494,414
images. We perform the following data clean up steps
before using WebFace for training our pose-specific CNN
models — (1) exclude images of all subjects in WebFace
that overlap with the testing and evaluation data sets, (2) re-
move all images of subject with fewer than five images in
the dataset and (3) remove images with undetectable faces.
Approximately 400, 000 images for 10, 500 subjects remain
of which we use 90% and 10% for training and validation,
respectively, of the CNNs.

The objective of IARPA’s Janus program is push the
frontiers of unconstrained face recognition. Janus datasets
contains images that have full-pose variations, as illustrated
by the pose distribution histogram in Figure 2, and provide
manual annotations, including facial bounding box, seed
landmarks of two-eye and nose base, lighting conditions
and some subject attributes, such as ethnicity, gender, efc.
These datasets introduce the novel concept of a template,
which is a collection of images and videos of the same sub-
ject. TJB-A and CS2 share 90% of image data. However,
they differ in evaluation protocols. In particular, IJB-A in-
cludes protocols for both open-set face identification (i.e.
1 : N search) and face verification (i.e. 1 : 1 comparison),
while CS2 focuses on closed-set identification. The datasets
are divided into gallery and probe subsets. The gallery sub-
set is a collection of templates for subjects to be enrolled
in the system, while the probe subset is a collection of tem-
plates for unknown subjects for testing and evaluation pur-
poses.
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Figure 2: Face pose distribution in LFW and JANUS datasets.

3. Face Recognition Pipeline
3.1. From Images to Representations

Given an input face image X, a typical recognition
pipeline applies a sequence of processing steps in order to
transform the 2D color image into a fixed-dimensional fea-
ture vector representation, as shown in Figure 1. To simplify
future discussions, we refer to this transformation process
as a function rep(-), and the resulting feature representa-
tion of an image X as F'x = rep(X). In the following we
discuss the processing steps of rep(+).

3.1.1 Facial Landmark Detection and Face Alignment

A facial landmark detection algorithm, lmd, takes a face
image X and estimates n predefined key points, such as eye
corners, mouth corners, nose tip, efc., as shown in Equation

ey
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where P, and P, denote a key point’s coordinate along x
and y axes, respectively. Depending on the number of de-
fined facial key points, landmarks can be roughly classified
into two types — (1) sparse landmark, such as in the 5-
point multitask facial landmark dataset [23] and (2) dense
landmark, such as in the 68-point 300w dataset [16]. Re-
gardless of the facial landmark detector used, landmark de-
tection produces anchor points of a face as a preprocessing
step to face recognition and other face analysis tasks.

Detected landmarks are then used to estimate the roll an-
gel of the face pose. The image is then pose-corrected by
rotating the image. Since landmark detection algorithms are
often trained with imbalanced datasets, which creates some
detection errors, the landmark detection is re-applied to the
pose-corrected image, as shown in Figure 1.

In order for downstream processing steps, such as fea-
ture extraction and recognition, to work on consistent fea-
ture spaces, all face images must be brought to a common



Figure 1: Facial representation pipeline.

coordinate system through face alignment, which reduces
pose variations. This is attained by aligning detected land-
marks with a set of landmarks from a reference model using
distance minimization. If the reference model is in 2D, the
process is called in-plane alignment and if it is a 3D model
the process is called out-of-plane alignment. In our recog-
nition pipeline, we use both non-reflective similarity trans-
formation for in-plane alignment, and a perspective trans-
formation for out-of-plane alignment.

Specifically, given a set of reference facial landmarks
Imd(R), we seek similarity transformation 7" to align a face
image to the reference model, such that

T* = argmin || T [Imd(X) | 1) = [Imd(R) [1][; ()
T

where [lmd(X) | 1] is simply an expansion of lmd(X) by

adding an all-one vector 1, and T is a homogeneous matrix

defined by rotation angle 6, scaling factor s, and translation

vector [t,,t,], as shown in Equation(3).

scos) —ssinf t,
T = |ssinf scosf t, 3)
0 0 1

Unlike 2D alignment, our 3D alignment relies on a 3D
generic face shape model as shown in Figure 3, although
we still need the detected facial landmark to estimate initial
face shape. Once we successfully fit our generic 3D face
shape model to a given face image, we can render face im-
ages with arbitrary yaw-pitch-roll parameters (details can
be found in [10] and [7]). For example, Figure 3(c) shows
rendered face at different yaw and pitch values. Figure 3(d)
shows different face images aligned to the same yaw-pitch-
roll configuration. Finally, aligned images are cropped to a
fixed size of 160x 128 pixels, which is used in subsequent
recognition steps.

3.1.2 Feature Extraction and Domain Adaptation

Feature extraction is an essential module in our repre-
sentation pipeline, for its responsibility to produce fea-
tures that provide the power for discriminating between

different subjects. Classically, face recognition systems
used hand-crafted features. For example, local binary
pattern (LBP) [1] and its variants [20] have been effec-
tively used for face recognition, and Gabor wavelet fea-
tures have also been widely used [21]. Since many of
such hand-crafted features involve hyper-parameters, multi-
scale, multi-resolution, and/or multi-orientation features
have also been useful for face recognition, although they
require more computations and occupy more space. Of-
ten, hand-crafted features do not require learning from data.
However, with the availability of training data, higher-level
feature representations could be learned [17]. This learning
process still depends on hand-crafted features, rather than
raw data.

In contrast, recent advances in deep learning [19, 15, 5,
6] demonstrate that feature representations from raw data
can be learned along with the recognition task, where all
layers, except the last one, in a deep neural network (DNN)
are considered to be feature learning layers. As a result,
one may use DNNs for feature extraction. Details of how
we learn feature extraction using DNNs are explained in
Section 3.2. For now, we deal with a any feature extractor
as a black box that takes an aligned and cropped image as
as input and produces a high-dimensional feature vector.

The objective of domain adaptation is to close the gap
between training and testing data. We use principal compo-
nent analysis (PCA) to learn the orthogonal transformation
from a testing dataset, such that 95% of its original feature
variance is kept, because it does not require any labeling
and is bounded by a low computational complexity. Al-
though feature dimension reduction is not the main purpose
here, possible noise is dropped along with the discarded fea-
ture dimensions. Although one may directly use adapted
features for matching, additional normalization can be very
helpful, such as Ly and power normalization [14].

3.2. Face Representation in Practice

Although one may implement the discussed conceptual
pipeline in many different ways, we believe that the two
most important components of a face recognition pipeline



Figure 3: Out-of-plane face alignment via rendering: (a) reference generic 3D face shape; (b) face image with estimated 3D face shape; (c)
rendered face at different yaw-and-pitch grids; (d) aligned faces at yaw 45° and pitch-0°.

are alignment and feature extraction. Therefore, we mainly
focus on the combination of face alignment and face fea-
ture extraction, and study the configurations shown in Table
1. In this table, HDLBP stands for high-dimensional local
binary pattern [1], and AlexNet, VGG16 and VGGI9 refer
to CNN architectures of [12], and config-D and E in [18],
respectively; “Ref. Model” denotes the reference model
used in face alignment, and “avg-all-face-lmd” means that
we use the averaged landmark vector of all training data,
while “gene-face-yaw @45 means that we use the generic
3D face model at 45° yaw and 0° pitch (see Figure 3(b)).
For HDLBP feature extraction, we compute a patch-based
LBP histogram of 6,098 predefined facial key points, and
then concatenate these histograms into a feature vector.

Table 1: Face representation pipelines.

Pip. Acronym Alignment Ref. Model Feature Rep. Dim.

HLBP in-plane avg-face HDLBP 100,000
ALEX-AF in-plane avg-all-face-Imd AlexNet 4,000
ALEX-FF in-plane avg-frontal-face-Imd AlexNet 4,000
ALEX-PF in-plane avg-profile-face-lmd AlexNet 4,000
ALEX-FYO  out-of-plane  gene-face-yaw @0 AlexNet 4,000

ALEX-FY45 out-of-plane gene-face-yaw @45 AlexNet 4,000

VGG16-AF in-plane avg-face-Imd VGG16 4,000
VGG19-AF in-plane avg-all-face-lmd VGG19 4,000
VGG19-FF in-plane avg-frontal-face-lmd VGG19 4,000
VGG19-PF in-plane avg-profile-face-lmd VGGI19 4,000

VGGI19-FYO out-of-plane  gene-face-yaw@0 VGG19 4,000
VGG19-FY45 out-of-plane  gene-face-yaw @45 VGG19 4,000
VGGI19-FY75 out-of-plane gene-face-yaw@75 VGGI19 4,000

From this point, we concentrate on the discussion of ob-
taining deep learning features. CASIA-WebFace is used as
our standard data set for training and validating different
CNN architectures. We preprocessed the dataset in order
to obtain aligned and cropped version of the data prior to
training the CNNs.

Regardless of the CNN architecture used, we always use
CASIA-WebFace as our training and validation dataset. De-
pending on the representation pipeline used, we prepro-
cess all CASIA-WebFace data until face alignment. This
produces approximately 400,000 samples from 10,500 sub-
jects.

3.2.1 Transfer Learning

Since the amount of face data in CASIA-WebFace is rel-
atively limited (400, 000 images for 10, 500 subjects), we
initialize our CNNs with pre-trained CNNs using the pub-
licly available models from the ILSVRC2014 image clas-
sification task, whose ImageNet dataset contains more than
100 million images for 1000 classes. In order to use a pre-
trained model as an initial model for the CASIA-WebFace
recognition task, we keep all weights of all CNN layers ex-
cept those from the last dense layer, since the number of out-
put nodes of the last layer must correspond to the number of
subject in WebFace (i.e. 10, 500) and reinitialize this layer
with random weights. After we construct this base model,
we begin transfer learning process [13] for face recogni-
tion in using Caffe library, and obtain new CNN models of
ALEX-AF, VGG16-AF, and VGG19-AF, modified to match
WebFace subjects and adapted to face feature extraction.
Caffe provides pretrained models of AlexNet, VGG16 and
VGGI19 and automatically performs the required prepro-
cessing, such as resizing an input image to 224 x 224 pixels,
subtracting an average image, efc. With respect to model
training, we use the stochastic gradient descent optimizer
with the learning rate starting at le — 3 and reducing it to
le-4 as the convergence plateaus.

To verify the performance of transfer learning, we clus-
ter the output of fc7 layer. Figure 4 shows cluster-wise av-
erage faces from the CASIA-WebFace [22] data using raw
RGB values and the fc7 layer features of VGG19-AF. It can
be seen that VGG19-AF learns many important facial at-
tributes, such as gender, face shape, ethnicity, hair color,
efc.

3.2.2 Pose-wise Fine Tuning

Once we have our face recognition baseline CNN, we then
apply fine tuning to learn pose-specific features. For ex-
ample, we use the ALEX-AF model as our base model,
and further train ALEX-FF and ALEX-PF, which focus on
near-frontal and near-profile faces, respectively. Based on
the ALEX-PF CNN, we can further fine-tune it using ren-
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Figure 4: GMM 64 Clustering CASIA-WebFace data according to
(a) raw RGB-values, and (b) VGG19-AF fc7 feature.

dered faces aligned at 0° yaw, and obtain ALEX-FY0O CNN.
The essence behind this CNN training is that we always
only move one step forward. For example, we do not use
AlexNet as the base model for ALEX-FF because ALEX-
Net’s training data contains objects from different poses.

Similarly, we do not use the near-profile model VGG19-PF
as the base model for VGG19-FYO0, because the near-frontal
CNN model VGG-FF is more appropriate in the sense that
rendered faces at 0° yaw are also frontal. Table 2 gives
the full set of descriptions of how we learn these CNNs for
face recognition. At the end of each fine tuning process,
the last (i.e. classification) layer of the CNN is discarded
and the CNN is used as a feature extractor by concatenat-
ing the outputs of one or more layers of the CNN. Note that
we use different versions of preprocessed CASIA-WebFace
data to train different CNNs. Specifically, all real refers
to all CASIA-WebFace images, real frontal and real profile
only refer to those whose yaw angles are close to 0° and
75°, respectively. Figure 5 shows the averaged images of
different training partitions.

Table 2: Deep learning features for face recognition

Pip. Acronym Learning Type Base CNN Model Training Partition

ALEX-AF transfer AlexNet all real
ALEX-FF finetune ALEX-AF real frontal
ALEX-PF finetune ALEX-AF real profile
ALEX-FYO0 finetune ALEX-FF rendered yaw(Q
ALEX-FY45 finetune ALEX-PF rendered yaw45
VGG16-AF transfer VGG16 all real
VGG19-AF transfer VGG19 all real
VGGI19-FF finetune VGG19-AF real frontal
VGG19-PF finetune VGG19-AF real profile
VGG19-FY0O finetune VGG19-FF rendered yaw0
VGG19-FY45 finetune VGG19-PF rendered yaw45
VGG19-FY75 finetune VGG19-FY45 rendered yaw75

(e) )

Figure 5: Averaged faces of different training partitions. (a) all
real, (b) real frontal, (c) real profile, (d) rendered yawO0, (e) ren-
dered yaw45, and (f) rendered yaw75.

(a) (b) (©) (d)

3.3. Multi-Modal Representation for Recognition

Without loss of generality, assume that we have k dis-
tinctive representations of a single input facial image X,
namely,

R(X) = {rep; (X), repy(X), -+ ,repy(X)} (4

where each representation is obtained by applying the con-
ceptual pipeline of Figure | using a different feature ex-
tractor. When this general multi-modal representation only
involves pose-specific models, i.e. “fine tuned” models in
Table 2, we call this representation a multi-pose represen-
tation.

Once we define the face representation of Equation (4),
we compute the similarity between two face images in two



steps — (1) compare a similarity score between features
from the same representation pipeline, and (2) fuse simi-
larities scores across different representation pipelines, as
shown in Figure 6. Although one may use various ways
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Figure 6: Facial matching overview.

to compute feature similarities and to fuse a set of scores,
we simply use direct representation-to-representation (i.e.
feature-to-feature) comparison in pair-wise fashion to avoid
having to construct new classifiers based on the target (i.e.
testing) data set. Specifically, we use Equation (5) to com-
pute the pair-wise image similarity score

sim (X, Y)=fuse ({rsim(rep,(X),rep;(Y)}5_1)) (5

where we use a cosine similarity metric defined in Equa-
tion (6) to quantify the similarity between two features, and
use softmax weights to fuse different scores, as shown in
Equation (7), with the bandwidth parameter 5 = 10.

. _ <rep(X),rep(Y) >
rsim(rep(X),rep(Y)) = [rep(X)| - [rep(Y)]] ©

Sk si-exp(B - sy)
S exp(B - si)

As mentioned before, since the IJB-A dataset uses the no-
tion of templates, we need to compare the similarity be-
tween two templates X and Y instead of two images. There-
fore, we use one more step of softmax fusion over all pair-
wise scores from images in two templates, as shown in
Equation (8).

fuse({s1,s2, -

sSk}) = )

tsim (X, Y) = fuse ({sim(X,Y)|X e X,)Y € Y}) (8)

3.4. Time Complexity

We use a single NVIDIA Tesla K40 GPU for training
and testing. Fully training and fine tuning a VGG19-AF-
like CNN model takes approximately one week with fully
preprocessed images. Testing a single IJB-A/CS2 data split
with one CNN model takes roughly one hour using the pro-
posed facial representation pipeline (see Fig. 1). The most
time consuming step in testing is PCA adaptation and it
costs about 20 minutes for a single IJB-A/CS data split.

4. Experimental Evaluation
4.1. Metrics and Protocols

IJB-A dataset contains two types of protocols, namely
search and compare. The search protocol measures the ac-
curacy of open-set and closed-set search among N gallery
templates in terms of the true acceptance rate (TAR) at var-
ious false acceptance rates (FAR) as well as receiver op-
erating characteristic (ROC) plots. The compare protocol
measures the verification accuracy between two templates.
However, 1JB-A carefully designed challenging template
pairs by ensuring that subjects of templates have the same
gender, and that their skin colors do not differ more than
one level. Metrics of rank-1, rank-5, and the missing rate
correspond to false alarm rates of %0 and ﬁ. Detailed de-
scriptions of evaluation protocols and metrics can be found

in[l1].

4.2. Experiment Overview

In the rest of this section, we report the results of several
experiments based on our proposed face representation and
matching scheme. Since each experiment may have its own
baseline, comparing performances across different experi-
ments may be inacurate. Although CS2 and IJBA both con-
tains 10 splits of data, we only report averaged scores across
these 10 splits to save space. Because CS2 and IJBA pro-
vide many associated attributes for a given face image, we
do use provided subject face bounding boxes and seed land-
marks in most of the following experiments, except those
that explicitly state not to.

4.3. Selecting CNN Layers for Feature Extraction

As in many recognition problems, feature plays a core
role in face recognition. Given a trained face recognition
CNN, we may treat each layer as a feature, and also a col-
lection of features from different layers. Therefore, it is
interesting to investigate which combination of features is
the best for face recognition. In this experiment, we ex-
haustively try all possible layer combinations of the last six
layers of each CNN architecture, and report face recogni-
tion performance on selected combinations with reasonable
performance in Table 3, where ‘X’ indicates that this layer
of feature is used.

As one can see, the same collection of features means
something different for ALEX-AF and VGG19-AF. Espe-
cially, we notice that when we only use the fc7 layer, the
second-to-last dense layer, it is the best among all possible
layer combinations for VGG19-AF, but not for ALEX-AF.
This result clearly confirms that an optimal feature can be
a set of features from different layers. From now on, all of
our future experiments on ALEX-* representations will be
based on the feature combination of (pool5, fc7, fc8, prob),



Table 3: DNN Features for Face Recognition in CS2

Layer Name CNN Feature of Layer Combinations

prob X X X X X
fc8 X X X X X X X
fe7 X X X X
fc6 X X
poolS X X X X X
Metric ALEX-AF

TAR@FAR=0.01 | .572 .403 .374 457 .572 .687 .688 .662 .703 .549
FAR@TAR=0.85 |.039 .058 .060 .102 .042 .452 .044 .041 .046 .038
RANK@10 | .875 .844 .820 .741 .867 .885 .878 .868 .883 .872
Metric VGG19-AF
TAR@FAR=0.01 | .816 .724 .548 .749 .815 .788 .789 .753 .748 .816
FAR@TAR=0.85 |.018 .018 .034 .030 .017 .022 .023 .028 .027 .017
RANK@10 |.909 .892 .879 .913 .909 .921 .919 .916 .913 .909

while VGG* representations are based on the feature com-
bination of (fc8).

Furthermore, we compare four face recognition pipelines
based on different features; specifically HDBLP, ALEX-
AF, VGG16-AF, and VGG19-AF as shown in Table 4. It is
clear that deep learning features outperform classic HDLBP
features by a large margin, even though we spend an al-
most comparable amount of time for grid searching over
the HDLBP hyper-parameter space.

Table 4: Feature Influences for Face Recognition in CS2

Metric |HDLBP ALEX-AF VGG16-AF VGG19-AF
TAR@FAR=0.01 274 703 779 816
TAR@FAR=0.10 511 906 918 929
FAR@TAR=0.85 .680 .046 .025 .017
FAR@TAR=0.95 .930 275 228 210

RANK@1 .398 .665 739 773
RANK@5 .596 .834 .862 .880
RANK@10 .689 .883 .895 .909

4.3.1 Effect of Landmark Detection Algorithm

We mainly focus on evaluating facial landmark perfor-
mance for face recognition. Our baseline of face recogni-
tion uses the ALEX-AF representation with cosine similar-
ity and softmax score fusion, and the dataset used is CS2.
Four state-of-the-art facial landmarks are used — (1) DLIB
[9] with 68 points, (2) FPS3K [4] with 68 points, (3) TD-
CNN [23] with 5 points, and (4) CLNF with 68 points [2, 3]
and its variant CLNFs that use seed landmarks provided in
CS2 [11] for the estimation of an initial face shape. Note
that we use DLIB, FPS3K and TDCNN out-of-shelf, and
because they do not provide an interface to set the initial
facial landmarks, we cannot report their performance with
seed landmarks. Detailed results are listed in Table 5. All of
these landmark detectors share the same set of face bound-
ing boxes. In general, different landmark detectors do not
make a huge performance difference compared to different
features, and this implies that CNN features attain a certain
level of spatial invariance. On the other hand, initial seed

landmarks do help to largely improve face recognition per-
formance.

Table 5: Landmark Influence for Face Recognition in CS2

Metric | DLIB FPS3K TDCNN CLNF CLNF-s
TAR@FAR=0.01 | .689 .708 .692 682  .703
TAR@FAR=0.10 | .894 .903 .906 .878  .906
FAR@TAR=0.85 | .056 .049 .049 062 .046
FAR@TAR=0.95 | 249 237 228 504 275

RANK@1 | 658 .636 .608 .661 .665
RANK@5 | 821 .804 .803 .807  .834
RANK@10 | 871 .861 .861 .862 883

Table 6: Representation Influences for Face Recognition on CS2

Metric | AF -FF -PF -FY0 -FY45 -FY75 quadruple quintuple
ALEX- Arch.
TAR@FAR=0.01 | .703 .635 .332 .754 .797 .802 814 814
TAR@FAR=0.10 | .906 .729 .443 913 935 .937 .939 941
FAR@TAR=0.85 | .046 .376 .558 .036 .020 .019 017 .017
FAR@TAR=0.95 | .275 485 .661 .249 .151 .149 143 126
RANK@1 | .665 .576 263 .706 .751 .753 781 799
RANK@S5 | .834 .694 367 .844 883 .882 .898 .906
RANK@10 | .883 .723 419 .889 918 .920 928 936
VGG19- Arch.
TAR@FAR=0.01 | .816 .688 .364 .806 .858 .860 .873 .897
TAR@FAR=0.10 | .929 .738 453 930 .948 .948 950 959
FAR@TAR=0.85 | .017 .489 .659 .020 .009 .009 .006 .003
FAR@TAR=0.95 | 210 .616 .763 .171 .112 .11l 101 .065
RANK®@1 |.733 .655 .305 .769 .817 .802 854 .865
RANK@5 | .880 .723 .397 881 914 913 927 934
RANK@10 | .909 .743 439 912 936 .936 946 .949

4.4. Single versus Multi-Pose Representations

We investigate the influence of using three different
numbers of representations, namely single, quadruple, and
quintuple. Specifically, single uses only one of *-AF, *-FF,
*-PF, *-FYO0, *-FY45, *-FY75 representations, quadruple
uses the representation tuple of ( *-FF, *-PF, *-FY0, *-FY45
) and quintuple uses the representation tuple of ( *-FF, *-PF,
*FY0, *-FY45, *-FY75 ), where * denotes either ALEX
or VGG19 CNN architecture. As shown in Table 8, face
recognition performance significantly improves as the num-
ber of pose representations increases, regardless of whether
we use ALEX architecture or VGG19 architecture.

4.5. Comparing to State-of-the-Art Methods

We now compare our VGG19-quintuple representation,
namely (VGG19-FF, -PF, -FY0, -FY45, -FY75), to state-of-
the-art methods [19, 15, 5], along with the baseline GOTS
and COTS from [ 1 1] on the IJB-A dataset. It is clear that our
multi-pose representation-based recognition pipeline out-
performs other state-of-the-art methods. It is worthy to
mention that the algorithm presented in [5] involves both
fine tuning on IJB-A data and uses metric learning using
labeled 1JB-A training data, while our algorithm is data-
agnostic and is used out of the box on both CS2 and IJB-A
without target domain specific tuning.



Table 7: Results on CS2

Metric | COTS GOTS FV[5] DCNN-all[5] [10] | Ours
TAR@FAR=0.01 | 581 467 4I1 876 733 | 897
TAR@FAR=0.10 | .761 675 .704 973 .895| .959

RANK@1 | 551 413 381 838 820 865

RANK@5 | .694 517 559 924 929 | .934

RANK@10 | 741 624 637 949 - | 949
Table 8: 1:N Results on [JB-A

Metric | COTS GOTS [15] DCNN-all[5] [19] | Ours

1:N (Search Protocol)
TAR@FAR=0.01 | 406 .236 - - 733 876
TAR@FAR=0.10 | .627 433 - 895 | .954
RANK@1 | 443 246 .588 .860 .820 | .846
RANK@5 | 595 375 .797 943 929 | 927

RANK@10 - - - 947

1:1 (Verification Protocol)
TAR@FAR=0.01 - - - - - 787
TAR@FAR=0.10 - - - - - 911

5. Conclusion

We introduced a multi-pose representation for face
recognition, which is a collection of face representations
learned from specific face poses. We show that this novel
representation significantly improves face recognition per-
formance on IJB-A benchmark compared not only to the
single best CNN representations but also those state-of-the-
art methods that heavily rely on supervised learning, such
gallery fine-tuning and metric learning.
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