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Abstract—Recognizing actions in videos is rapidly becoming a topic of much

research. To facilitate the development of methods for action recognition, several

video collections, along with benchmark protocols, have previously been

proposed. In this paper, we present a novel video database, the “Action Similarity

LAbeliNg” (ASLAN) database, along with benchmark protocols. The ASLAN set

includes thousands of videos collected from the web, in over 400 complex action

classes. Our benchmark protocols focus on action similarity (same/not-same),

rather than action classification, and testing is performed on never-before-seen

actions. We propose this data set and benchmark as a means for gaining a more

principled understanding of what makes actions different or similar, rather than

learning the properties of particular action classes. We present baseline results on

our benchmark, and compare them to human performance. To promote further

study of action similarity techniques, we make the ASLAN database, benchmarks,

and descriptor encodings publicly available to the research community.

Index Terms—Action recognition, action similarity, video database, web videos,

benchmark.
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1 INTRODUCTION

RECOGNIZING human actions in videos is an important problem in
computer vision with a wide range of applications, including video
retrieval, surveillance, man-machine interaction, and more. With
the availability of high bandwidth communication, large storage
space, and affordable hardware, digital video is now everywhere.
Consequently, the demand for video processing, particularly
effective action recognition techniques, is rapidly growing.
Unsurprisingly, action recognition has recently been the focus of
much research.

Human actions are complex entities taking place over time and

over different body parts. Actions are either connected to a context

(e.g., swimming) or context free (e.g., walking). What constitutes

an “action” is often undefined, and so the number of actions being

performed is typically uncertain. Actions can vary greatly in

duration; some actions being instantaneous whereas others are

prolonged. They can involve interactions with other people or

static objects. Finally, they may include the whole body or be

limited to one limb. Fig. 1 provides examples, from our database,

of these variabilities.
To facilitate the development of action recognition methods,

many video sets, along with benchmark protocols, have been

assembled in the past. These attempt to capture the many

challenges of action recognition. Some examples include the KTH

[1] and Weizmann [2] databases, and the more recent Hollywood,

Hollywood2 [3], [4], and YouTube-actions databases [5].

This growing number of benchmarks and data sets is
reminiscent of the data sets used for image classification and face
recognition. However, there is one important difference: Image
sets for classification and recognition now typically contain
hundreds, if not thousands, of object classes or subject identities
(see, for example, [6], [7], [8]), whereas existing video data sets
typically provide only around 10 classes (see Section 2).

We believe one reason for this disparity between image and
action classification is the following: Once many action classes are
assembled, classification becomes ambiguous. Consider, for ex-
ample, a high jump. Is it “running?” “jumping?” “falling?” Of
course, it can be all three and possibly more. Consequently, labels
assigned to such complex actions can be subjective and may vary
from one person to the next. To avoid this problem, existing data
sets for action classification offer only a small set of well-defined
atomic actions, which are either periodic (e.g., walking), or
instantaneous (e.g., answering the phone).

In this paper, we present a new action recognition data set, the
“Action Similarity LAbeliNg” (ASLAN) collection. This set
includes thousands of videos collected from the web, in over
400 complex action classes.1

To standardize testing with these data, we provide a “same/
not-same” benchmark which addresses the action recognition
problem as a non-class-specific similarity problem and which is
different from more traditional multiclass recognition challenges.
The rationale is that such a benchmark requires that methods learn
to evaluate the similarity of actions rather than be able to recognize
particular actions.

Specifically, the goal is to answer the following binary ques-
tion—“does a pair of videos present the same action, or not?” This
problem is sometimes referred to as the “unseen pair-matching
problem” (see, for example, [8]). Figs. 2 and 3 show some examples
of “same” and “not-same” labeled pairs from our database.

The power of the same/not-same formulation is in diffusing a
multiclass task into a manageable binary class problem. Specifi-
cally, this same/not-same approach has the following important
advantages over multiclass action labeling: 1) It relaxes the
problem of ambiguous action classes—it is certainly easier to label
pairs as same/not-same rather than pick one class out of over a
hundred, especially when working with videos. Class label
ambiguities make this problem worse. 2) By removing from the
test set all the actions provided for training, we focus on learning
action similarity, rather than the distinguishing features of
particular actions. Thus, the benchmark aims to gain a general-
ization ability which is not limited to a predefined set of actions.
Finally, 3) besides providing insights toward better action
classification, pair matching has interesting applications in its
own right. Specifically, given a video of an (unknown) action, one
may wish to retrieve videos of a similar action without learning a
specific model of that action and without relying on text attached
to the video. Such applications are now standard features in image
search engines (e.g., Google images).

To validate our data set and benchmarks, we code the videos in
our database using state-of-the-art action features, and present
baseline results on our benchmark using these descriptors. We
further present a human survey on our database. This demon-
strates that our benchmark, although challenging to modern
computer vision techniques, is well within human capabilities.

To summarize, we make the following contributions:

1. We make available a novel collection of videos and
benchmark tests for developing action similarity techni-
ques. This set is unique in the number of categories it
provides (an order of magnitude more than existing
collections), its associated pair-matching benchmark, and
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the realistic, uncontrolled settings used to produce the
videos.

2. We report performance scores obtained with a variety of
leading action descriptors on our benchmark.

3. We have conducted an extensive human survey which
demonstrates the gap between current state-of-the-art
performance and human performance.

2 EXISTING DATA SETS AND BENCHMARKS

In the last decade, image and video databases have become

standard tools for benchmarking the performance of methods

developed for many Computer Vision tasks. Action recognition

performance in particular has greatly improved due to the

availability of such data sets. We present a list highlighting several

popular data sets in Table 1. All these sets typically contain around

10 action classes and vary in the number of videos available, the

video source, and the video quality.
Early sets, such as KTH [1] and Weizmann [2], have been

extensively used to report action recognition performance (e.g., [18],

[19], [20], [21], [22], [23], [24], to name a few). These sets contain few

“atomic” classes such as walking, jogging, running, and boxing. The

videos in both these sets were acquired under controlled settings:

static camera and uncluttered, static background.

Over the last decade, the recognition performance on these sets
has saturated. Consequently, there is a growing need for new sets,

reflecting general action recognition tasks with a wider range of
actions. Attempts have been made to manipulate acquisition

parameters in the laboratory. This was usually done for specific
purposes, such as studying viewing variations [10], occlusions [25],

or recognizing daily actions in static scenes [14]. Although these
databases have contributed much to specific aspects of action

recognition, one may wish to develop algorithms for more realistic
videos and diverse actions.

TV and motion picture videos have been used as alternatives to
controlled sets. The biggest such database to date was constructed

by Laptev et al. [3]. Its authors, recognizing the lack of realistic
annotated data sets for action recognition, proposed a method for

automatic annotation of human actions in motion pictures based
on script alignment and classification. They have thus constructed
a large data set of eight action classes from 32 movies. In a

subsequent work [4], an extended set was presented containing
3,669 action samples of 12 action and 10 scene classes acquired

from 69 motion pictures. The videos included in it are of high
quality and contain no unintended camera motion. In addition, the

actions they include are nonperiodic and well-defined in time.
These sets, although new, have already drawn a lot of attention

(see, for example, [13], [26], [27]).
Other data sets employing videos from such sources are the

data set made available in [28], which includes actions extracted
from a TV series, the work in [11], which classifies actions in

broadcast sports videos, and the recent work in [15], which
explores human interactions in TV shows. All these sets offer only

a limited number of well-defined action categories.
While most action recognition research has focused on atomic

actions, the recent work in [29] and [16] addresses complex
activities, i.e., actions composed of a few simpler or shorter actions.

Ikizler and Forsyth [29] suggest learning complex activity models
by joining atomic action models built separately across time and

across the body. Their method has been tested on a controlled set
of complex motions and on challenging data from the TV series

Friends. Nieblesand et al. [16] propose a general framework for
modeling activities as temporal composition of motion segments.
The authors have collected a new data set of 16 complex Olympic

sports activities downloaded from YouTube.
Websites such as YouTube make huge amounts of video

footage easily accessible. Videos available on these websites are
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Fig. 1. Examples of the diversity of “real-world” actions in the ASLAN set.

Fig. 3. Examples of “not-same”-labeled pairs from our database.

Fig. 2. Examples of “same”-labeled pairs from our database.



produced under diverse, realistic conditions and have the
advantage of having a huge variability of actions. This naturally
brings to light new opportunities for constructing action recogni-
tion benchmarks. Such web data are increasingly being used for
action recognition related problems. This includes [30], [31],
performing automatic categorization of web videos, and [32],
[33], which categorize events in web videos. These do not directly
address action recognition, but inspire further research in using
web data for action recognition.

Most closely related to our ASLAN set is the YouTube Action
Dataset [5]. As far as we know, it is the first action recognition
database containing videos “in the wild.” This database, already
used in a number of recent publications (for example, [27], [34], [35]),
contains 1,168 complex and challenging video sequences from
YouTube and personal home videos. Since the videos’ source is
mainly the web, there is no control over the filming and therefore the
database contains large variations in camera motion, scale, view,
background, illumination conditions, etc. In this sense, this database
is similar to our own. However, unlike the ASLAN set, the YouTube
Action set contains only 11 action categories, which, although
exhibiting large intraclass variation, are still relatively well
separated.

Most research on action recognition focuses either on multilabel
action classification or on action detection. Existing methods for
action similarity such as [20], [36], [37] mainly focus on
spatiotemporal action detection or on action classification. Action
recognition has additionally been considered for never-before-seen
views of a given action class (see, e.g., the work in [10], [20], [38]).
None of these provide data or standard tests for the purpose of
matching pairs of never-before-seen actions.

The benchmark proposed here attempts to address another
shortcoming of existing benchmarks, namely, the lack of

established, standard testing protocols. Different researchers use

varying sizes of training and testing sets, different ways of

averaging over experiments, etc. We hope that by providing a

unified testing protocol, we may provide an easy means of

measuring and comparing performance of different methods.
Our work has been motivated by recent image sets, such as the

Labeled Faces in the Wild (LFW) [8] for face recognition and the

extensive Scene Understanding (SUN) database [39] for scene

recognition. In both cases, very large image collections were

presented, answering a need for larger scope in complementary

vision problems. The unseen pair-matching protocol presented in

[8] motivated the one proposed here.
We note that same/not-same benchmarks such as the one

described here have been successfully employed for different tasks

in the past. Face recognition “in the wild” is one such example [8].

Others include historical document analysis [40], face recognition

from YouTube videos [41], and object classification (e.g., [42]).

3 GOALS OF THE PROPOSED BENCHMARK

3.1 The Same/Not-Same Challenge

In a same/not-same setting, the goal is to decide if two videos

present the same action or not, following training with “same” and

“not-same”-labeled video pairs. The actions in the test set are not

available during training, but rather belong to separate classes. This

means that there is no opportunity during training to learn models

for actions presented for testing.
We favor a same/not-same benchmark over multilabel classifi-

cation as its simple binary structure makes it far easier to design and

evaluate tests. However, we note that typical action recognition

applications label videos using one of several different labels rather
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than making similarity decisions. The relevance of a same/not-same

benchmark to these tasks is therefore not obvious. Recent evidence

obtained using the LFW benchmark [8] suggests, however, that

successful pair-matching methods may be applied for multilabel

classification with equal success [43].

3.2 The Testing Paradigm

The setting of our testing protocol is similar to the one proposed by

the LFW benchmark [8] for face recognition. The benchmarks for

the ASLAN database are organized into two “Views.” View-1 is for

algorithm development and general experimentation, prior to

formal evaluation. View-2 is for reporting performance and should

only be used for the final evaluation of a method.
View-1: Model selection and algorithm development. This

view of the data consists of two independent subsets of the

database, one for training, and one for testing. The training set

consists of 1,200 video pairs: 600 pairs with similar actions and

600 pairs of different actions. The test set consists of 600 pairs:

300 “same” and 300 “not-same”-labeled pairs. The purpose of

this view is for researchers to freely experiment with algorithms

and parameter settings without worrying about overfitting.
View-2: Reporting performance. This view consists of 10 subsets

of the database, mutually exclusive in the actions they contain. Each

of the subsets contains 600 video pairs: 300 same and 300 not-same.

Once the parameters for an algorithm have been selected, the

performance of that algorithm can be measured using View-2.
ASLAN performance should be reported by aggregating scores

on 10 separate experiments in a leave-one-out cross-validation
scheme. In each experiment, nine of the subsets are used for
training, with the 10th used for testing. It is critical that the final
parameters of the classifier under each experiment be set using
only the training data for that experiment, resulting in 10 separate
classifiers (one for each test set).

For reporting final performance of the classifier, we use the

same method as in [8] and ask that each experimenter reports the

estimated mean accuracy and the standard error of the mean

(SE) for View-2 of the database. Namely, the estimated mean

accuracy �̂ is given by

�̂ ¼
P10

i¼1 Pi
10

;

where Pi is the percentage of correct classifications on View-2, using

subset i for testing. The standard error of the mean is given by

SE ¼
�̂ffiffiffiffiffi
10
p ; �̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP10
i¼1ðPi � �̂Þ

2

9

s
:

In our experiments (see Section 5), we also report the Area

Under the Curve (AUC) of the ROC curve produced for classifiers

used on the 10 test sets.

4 ASLAN DATABASE

ASLAN was assembled in over five months of work, which

included the downloading and the processing of around 10,000

videos from YouTube. Construction was performed in two phases.

In each phase, we followed the following steps:

1. defining search terms,
2. collecting raw data,
3. extracting action samples,
4. labeling, and
5. manual validation.

After the database was assembled, we defined the two views by

randomly selecting video pairs. We next describe the main

construction details. For further details, please refer to the project

webpage.

4.1 Main Construction Details

Our original search terms were based on the terms defined by the

CMU Graphics Lab Motion Capture Database.2 The CMU database

is organized as a tree, where the final description of an action

sequence is at the leaf. Our basic search terms were based on

individual action terms from the CMU leaves. For some of the

search terms, we also added a context term (usually taken from a

higher level in the CMU tree). For example, one search term could

be climb and another could be playground climb. This way, several

query terms can retrieve the same action in different contexts.
In the first phase, we used a search list of 235 such terms, and

automatically downloaded the top 20 YouTube video results for

each term, resulting in � 3;000 videos. Action labels were defined

by the search terms, and we validated these labels manually.
Following the validation, only � 10% of the downloaded videos

contained at least one action, demonstrating the poor quality of

keyword-based search, as noted also in [30], [44]. We further

dismissed cartoons, static images, and very low quality videos. The

intraclass variability was extremely large and search terms only

generally described the actions in each category. We were

consequently required to use more subtle action definitions and

a more careful labeling process.
In the second phase, 174 new search terms were defined based

on first phase videos. Fifty videos were downloaded for each new

term, totaling � 6;400 videos. YouTube videos often present more

than one action, and since ASLAN is designed for action similarity,

not detection, we manually cropped the videos into action

samples. An action sample is defined as a subsequence of a shot

presenting a detected action, that is, a consecutive set of frames

taken by the same camera presenting one action. The action

samples were then manually labeled according to their content; a

new category was defined for each new action encountered. We

allowed each action sample to fall into several categories whenever

the action could be described in more than one way.
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TABLE 2
ASLAN Database Statistics

2 Numbres relate to View-2 for each of the 10 experiments.



4.2 Database Statistics

The final database contains 3,631 unique action samples from 1,571
unique urls, and 1,561 unique titles, in 432 action classes. Table 2
provides some statistical information on our database. Additional
information may be found on our website.

All the action samples are encoded using mp4 (codec h264)
high resolution format (highest available for download), as well as
AVIs (xvid codec). The database contains videos of different
resolution, frame size, aspect ratio, and frame rate. Most videos are
in color, but some are grayscale.

Before detailing the views’ construction, we note the following:
Action recognition is often used for video analysis and/or scene
understanding. The term itself sometimes refers to action detec-
tion, which may involve selecting a bounding box around the actor
or marking the time an action is performed. Here, we avoid
detection by constructing our database from short video samples
that could, in principle, be the output of an action detector. In
particular, since every action sample in our database is manually
extracted, there is no need to temporally localize the action. We
thus separate action detection from action similarity and minimize
the ambiguity that may arise by determining action durations.

4.3 Building the Views

To produce the views for our database, we begin by defining a list
of valid pairs. Valid pairs are any two distinct samples which were
not originally cut from the same video; pairs of samples originating
from the same video were ignored. The idea was to avoid biases
for certain video context/background in “same”-labeled pairs and
to reduce confusion due to similar background for “not-same”-
labeled pairs.

View-1 test pairs were chosen out of the valid pairs in
40 randomly selected categories. The pairs in the training set of
View-1 were chosen out of the valid pairs in the remaining
categories.

To define View-2, we randomly split the categories into
10 subsets, ensuring that each has at least 300 valid same pairs.
To balance each subset’s categories, we allow only up to 30 same
pairs from each label. Once the categories of the subsets were
defined, we randomly selected 300 same and 300 not-same pairs
from each subset’s valid pairs.

5 BASELINE PERFORMANCE

To demonstrate the challenge of the ASLAN data and benchmark,
we report performance obtained with existing leading methods on
View-2 of the database. To this end, we encoded ASLAN video
samples using leading video descriptors.3 We then used linear
Support Vector Machine (SVM) [45] to classify pairs of same/not-
same actions, using combinations of (dis)similarities and descrip-
tors as input.

To validate these tests, we further report the following results:
1) Human performance on our benchmark demonstrating the
feasibility of the proposed pair-matching task on our videos.
2) Results obtained using the same descriptors on KTH videos with
a similar pair-matching protocol illustrating the challenge posed
when using videos collected in unrestricted conditions compared
to laboratory produced videos.

5.1 State-of-the-Art Video Descriptors

We have followed [3] and used the code supplied by the authors.
The code detects Space-Time Interest Points (STIPs) and computes
three types of local space-time descriptors: Histogram of Oriented
Gradients (HOG), Histogram of Optical Flow (HOF), and a
composition of these two referred to as HNF. As in [3], we used

the version of the code without scale selection, using instead a set

of multiple combinations of spatial and temporal scales.
The currently implemented variants of descriptors are computed

on a 3D video patch in the neighborhood of each detected STIP. Each

patch is partitioned into a grid with 3� 3� 2 spatiotemporal blocks.

Four-bin HOG descriptors, five-bin HOF descriptors, and eight-bin

HNF descriptors are computed for each block. The blocks are then

concatenated into 72-element, 90-element, and 144-element descrip-

tors, respectively.
We followed [3] in representing videos using a spatiotemporal

bag of features (BoF). This requires assembling a visual vocabulary

for each of our 10 experiments. For each experiment, we used

k-means (k ¼ 5;000) to cluster a subset of 100k features randomly

sampled from the training set. We then assigned each feature to the

closest vocabulary word (using euclidean distance) and computed

the histogram of visual word occurrences over the space-time

volume of the entire action sample.
We ran this procedure to create the three types of global video

descriptors of each video in our benchmark. We used the default

parameters, i.e., three levels in the spatial frame pyramid and initial

level of 0. However, when the code failed to find interest points, we

found that changing the initial level improved the detection.

5.2 Experimental Results

We performed 10-fold cross-validation tests as described in

Section 3.2. In each, we have calculated 12 distances/similarities

between global descriptors of the benchmark pairs. For each of

these (dis)similarities taken separately, we found an optimal

threshold on the same/not-same-labeled training pairs using

linear SVM classifier. Then, we have used this threshold to label

the test pairs. Table 3 reports the results on the test pairs

(averaged over the 10 folds).
In order to combine various features together, we have used the

stacking technique [46]. In particular, we have concatenated the

values of the 12 (dis)similarities into vectors, each such vector

representing a pair of action samples from the training. These

vectors, along with associated same/not-same labels, were used to

train a linear SVM classifier. This is similar to what was done in

[43]. Prediction accuracies based on these values are presented in

last row of Table 3. In the last column, we further show the results

produced by concatenating the (dis)similarity values of all three

descriptors, and use these vectors to train a linear SVM classifier.
The best results of 60:88� :77 percent accuracy and 65.30 per-

cent AUC were achieved using a combination of the three

descriptor types and the 12 (dis)similarities, i.e., vectors of length

36 (see Fig. 4).

5.3 Human Survey on ASLAN

To validate our database, we have conducted a human survey on a

randomly selected subset of ASLAN.4

The survey results were used for the following purposes: 1) Test

the difficulty posed by our selections to human operators. 2) Verify

whether the resolution of our action labels is reasonable, that is, if

our definition of different actions is indeed perceived as such by

people not part of the original collection process. 3) The survey

also provides a convenient means of comparing human perfor-

mance to that of the existing state of the art. Specifically, it allows

us to determine which categories are inherently harder to

distinguish than others.
The human survey was conducted on 600 pairs in 40 randomly

selected categories. Each user viewed 10 randomly selected pairs

and was asked to rate his or her confidence that each of these pairs

represents the same action on a 1 to 7 Likert scale. We have so far
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collected 1,890 answers from 189 users on the 600 pairs, an average

of three users per pair of videos.
User votes for each pair are treated as independent experts and

their median answer is the selected human score. The top curve in

Fig. 4 shows the performance of humans. The AUC computed for

our survey is 97.86 percent. Note that the results are not perfect,

suggesting either that the task is not totally trivial even for

humans, or else that some videos may be mislabeled.
These results show that although challenging, the ASLAN

benchmark is well within human capabilities. Fig. 4 thus highlights

the significant performance gap between humans and the baseline

on this benchmark data set. Doing so, it strongly motivates further

research into action similarity methods, with the goal of closing

this performance gap.

5.4 The Same/Not-Same Setting on KTH

To verify the validity of our settings and the ability of the given

descriptors to infer same/not-same decisions on never-before-seen

data, we have defined a same/not-same protocol using the videos

included in the KTH set [1]. We randomly chose three mutually

exclusive subsets on the six actions of the KTH set, and performed

threefold cross-validation tests using the same (dis)similarities for

the classifier as in the ASLAN experiments. The best performing

(dis)similarities are presented in Table 4.
The performance on the KTH data reached 90 percent accuracy

and 97 percent AUC, even using a single descriptor score. Clearly,

methods applied to ASLAN perform far better when applied to

videos from the KTH data set. The lower performance on ASLAN

may indicate that there is a need for further research into action

descriptors for such “in the wild” data.

6 SUMMARY

We have introduced a new database and benchmarks for
developing action similarity techniques: the Action Similarity
LAbeliNg (ASLAN) collection. The main contributions of the
proposed challenge are: First, it provides researchers with a large,
challenging database of videos from an unconstrained source, with
hundreds of complex action categories. Second, our benchmarks
focus on action similarity, rather than action classification, and test
the accuracy of this binary classification based on training with
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Fig. 4. ROC curve average over 10 folds of View-2.

TABLE 3
ASLAN Performance: Accuracy � SE and (AUC), Averaged over the 10-Folds

Locally best results in blue and best overall results in red. In the last four rows, original vectors were normalized before calculating (dis)similarities.

TABLE 4
Selected Classification Performance on the KTH Data Set: Accuracy � SE and (AUC), Averaged over the Threefolds

Locally best results are marked in blue. Overall best results are marked in red.



never-before-seen actions. The purpose of this is to gain a more

principled understanding of what makes actions different or

similar, rather than learn the properties of particular actions.

Finally, the benchmarks described in this paper provide a unified

testing protocol and an easy means for reproducing and compar-

ing different action similarity methods.
We tested the validity of our database by evaluating human

performance, as well as reporting baseline performance achieved

by using state-of-the-art descriptors. We show that while humans

achieve very high results on our database, state-of-the-art methods

are still far behind, with only around 65 percent success. We

believe this gap in performance strongly motivates further study of

action similarity techniques.
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